Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Т.Е. Никифорова. Биологическая безопасность продуктов питания.pdf
Скачиваний:
482
Добавлен:
06.02.2016
Размер:
2.15 Mб
Скачать

Из организма свинец выводится с фекалиями (90 %), мочой, а также с грудным молоком. Биологический период полувыведения свинца из мягких тканей около 20 дней, а из костей - до 20 лет.

В сельскохозяйственную продукцию свинец может попадать из почвы, на которой выращивается, и грунтовых вод; в продукты животноводства - из кормов и питьевой воды.

Проводимые в разных странах исследования свидетельствуют о большой концентрации свинца (а также и кадмия) в зонах автомагистралей. В пахотном слое почвы вблизи автомагистралей с интенсивным движением уровень свинца, как и вблизи его природных залежей, достигает 100…1000 мг/кг. При этом к факторам, влияющим на накопление свинца, относятся расстояние от дороги, рельеф местности, грузонапряженность, направление ветров, вид растений и другие.

Для профилактики поступления свинца в организм человека с пищевым рационом необходимо учитывать все названные выше пути возможного загрязнения им пищевых продуктов и питьевой воды. При производстве керамической посуды можно использовать только высококачественную готовую сплавленную (фриттированную) глазурь, содержащую не более 12 % химически прочно связанного свинца. Примесь свинца в олове, используемом для лужения котлов, ограничивается 1 %; в оловянных покрытиях консервной жести концентрация свинца не должна превышать 0,04 %.

Предельно допустимые концентрации свинца в основных пищевых продуктах представлены на рис. 3.7.

Рис. 3.7. ПДК свинца в основных пищевых продуктах

Ртуть (Нg)

В эпоху Ренессанса ртуть в основном ценилась своими медицинскими свойствами, а также использовалась в смеси с другими металлами как средство серебрения зеркал. Для средневековых алхимиков ртуть имела

111

особую ценность и играла важную роль в поисках философского камня – таинственного вещества, которое превращает простые металлы в золото. В ХХ в. было доказано, что ртуть участвует во многих реакциях как катализатор.

В50-хгодахвзаливеМинаматавЯпониирайонырыбногопромыслаиз- запромышленныхвыбросовбылизагрязненыметилртутью. Концентрацияртутив рыбе и моллюсках в этом заливе составила свыше 29 мг/кг. При употреблении такой рыбы в организм ежедневно поступало 30 мг Нg и более. Трагедия Минаматы заключаетсявтом, что, несмотряначрезвычайновысокоесодержаниеметилртути

взаливе, мерыпопредотвращениюдальнейшегопоступленияртутивеговоды небылиприняты, изагрязнениепродолжалосьвплотьдо70-хгодов. Кфевралю1977 г. общее числослучаевотравлениясоставило121, причем46 сосмертельнымисходом. Наблюдалось22 случаяврожденногоотравления, когдауматерей, потреблявшихзагрязненнуюрыбу, рождалисьмладенцысмозговыми отклонениями: паралич, отставание в развитии, нарушение координации движений (больные напоминали «дышащих деревянных кукол»). Подобная эпидемия, произошедшая также в Японии на реке Агано (префектура Ниигата), привела к 49 случаям отравления, 6 из которых - сосмертельнымисходом.

В Финляндии беременным женщинам вовсе не рекомендуется употреблятьрыбувпищу. Шведскиеспециалистыпогигиенепродовольствиятребовали снизитьдопустимуюконцентрациюртутиврыбеизБалтийскогоморя до 0,5 или даже 0,2 мг/кг, так как предел, равный 1 мг/кг, ограждает человека только от симптомовострогоотравления, нонепредохраняетотдругихтяжелыхпоследствийпораженияртутью(например, генетическихповреждений).

Ртуть находит широкое применение в промышленности. Ежегодно в мире получают более 10 тыс. т ртути, которые используют следующим образом: 25 % - для производства электродов при получении хлора и щелочей, 20 % - в электрическом оборудовании, 15 % - при производстве красок, 10 % - для производства ртутных приборов, таких как термометры, 5 % - в производстве зеркал, в агрохимии и 3 % - в качестве ртутной амальгамы при лечении зубов, 22 % - при получении детонаторов, катализаторов (например, для производства ацетальдегида и поливинилхлорида), в производстве бумажной пульпы, фармацевтике и косметике, а также в военных целях. Промышленное значение имеют высокотоксичные неорганические соединения ртути, в частности сулема, из которой получают другие ртутные соединения и которая применяется при травлении стали. Органические соединения ртути применяли в качестве фунгицидов при обработке зерна. Однако с тех пор, как стало известно об опасности подобных соединений, во многих странах их использование было запрещено. Кроме 10 тыс. т ртути, добываемых в мире при горнорудных разработках, еще 10 тыс. т металла выделяется в окружающую среду при сгорании угля, нефти и газа, добыче пустой породы и других индустриальных разработках.

112

Ртуть - один из самых опасных и высокотоксичных элементов, обладающий способностью накапливаться в растениях и в организме животных и человека, т. е. является ядом кумулятивного действия. Ртуть - единственный металл, представляющий собой при комнатной температуре жидкость, однако она может существовать в различных физических состояниях и химических формах. Кроме элементного состояния (Нg0), ртуть образует неорганические и органические соединения, в которых проявляет степень окисления

+1 и +2.

Токсичность ртути зависит от вида ее соединений, которые по-разному всасываются, метаболизируются и выводятся из организма. Из металлорганических соединений с точки зрения токсикологии наиболее важными являются алкилртутные соединения с короткой цепью: метил-, этил-, диметил-, пропилртуть. В них связь ртути и углерода является устойчивой, не разрушается водой, кислотами и основаниями, что объясняется слабым сродством ртути к кислороду.

Механизм токсического действия ртути связан с ее взаимодействием с сульфгидрильными группами белков. Блокируя их, ртуть изменяет свойства или инактивирует ряд жизненно важных ферментов (гидролитических и окислительных). Ртуть, проникнув в клетку, может включиться в структуру ДНК, что сказывается на наследственности человека. Мозг проявляет особое сродство к метилртути и способен аккумулировать почти в 6 раз больше ртути, чем остальные органы. При этом более 95 % Нg в тканях мозга находится в органической форме. В других тканях органические соединения деметилируются и превращаются в неорганическую ртуть. В эмбрионах ртуть накапливается так же, как и в организме матери, но содержание ртути в мозге плода может быть выше.

Неорганические соединения ртути нарушают обмен аскорбиновой кислоты, пиридоксина, кальция, меди, цинка, селена; органические - обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, марганца, селена.

Антагонистами ртути в организме человека являются цинк и, особенно, селен. Предполагают, что защитное действие селена обусловлено деметилированием ртути и образованием нетоксичного соединения - селено-ртутного комплекса.

В продуктах ртуть может присутствовать в трех видах: в виде атомарной ртути, а также ее неорганических и органических соединений. Случаи загрязнения пищевых продуктов металлической ртутью являются очень редкими. Ртуть плохо адсорбируется на продуктах и легко удаляется с их поверхности.

Ртуть относится к рассеянным в природе элементам; по распространению в земной коре она занимает 62-е место, средняя концентрация составляет 0,5 мг/кг). Основным источником поступления ртути в окружающую среду является естественный процесс ее испарения из земной коры и океанов в количестве 25…125 тыс. тонн ежегодно. Распределение и миграция ртути в окружающей среде осуществляются в виде круговорота двух типов: 1) перенос

113

паров элементной ртути от наземных источников в Мировой океан; 2) циркуляция диметилртути, образуемой в процессе жизнедеятельности бактерий. Именно второй тип круговорота, включающий метилирование неорганической ртути в донных отложениях озер, рек и других водоемов, а также в Мировом океане, является ключевым звеном движения ртути по пищевым путям водных экологических систем, по которым она поступает в организм человека. Процесс биокумуляции ртути может включать следующие звенья: планктонные организмы (например, водоросли) – ракообразные – рыбы – птицы. Человек может включаться в такую пищевую цепь на любом этапе; в основном это происходит в результате потребления рыбы. Для человека представляет опасность потребление в пищу некоторых видов рыб, моллюсков. Мясо рыбы отличается наибольшей концентрацией ртути и ее соединений, поскольку активно аккумулирует их из воды и корма, в который входят различные гидробионты, богатые ртутью. Организм рыб также способен синтезировать метилртуть, которая накапливается в печени. Самое высокое содержание метилртути обнаружено в организме хищных рыб.

Если нехищные пресноводные рыбы могут содержать ртуть в пределах от 78 до 200 мкг/кг, а океанские нехищные рыбы от 300 до 600 мкг/кг, то хищные пресноводные рыбы - от 107 до 509 мкг/кг, а концентрация ртути у хищных океанских рыб достигает очень высоких значений. У некоторых видов рыб в мышцах содержится белок - металлотионеин, который с различными металлами, в том числе и с ртутью, образует комплексные соединения, способствуя тем самым накапливанию ртути в организме и передаче ее по пищевым цепям. У таких рыб содержание ртути достигает 500…20 000 мкг/кг (рыба-сабля) и 5 000…14 000 мкг/кг (тихоокеанский марлин). Среднее количество ртути в морских рыбах составляет 150 мкг на 1 кг их массы.

Ворганизм человека ртуть поступает в наибольшей степени с рыбопродуктами, в которых ее содержание может многократно превышать ПДК. Поэтому в Финляндии, например, рекомендуется есть рыбу только 1…2 раза

внеделю. Однако отказ от питания рыбой тоже не является надежной защитой от поступления в организм ртути, поскольку рыбную муку используют в качестве кормовой добавки для домашних животных. Растительные продукты также могут быть источником ртути, если выращиваются на загрязненных почвах или обрабатываются ртутьсодержащими пестицидами.

Восновных пищевых продуктах содержание ртути обычно не превышает 60 мкг на 1 кг продукта и составляет (мкг/кг): в продуктах животноводства: мясо 6…20, печень 20…35, почки 20…70, молоко 2…12, сливочное масло 2…5, яйца 2…15; в съедобных частях сельскохозяйственных растений: овощи 3…59, фрукты 10…124, бобовые 8…16, зерновые 10…103; в шляпочных грибах 6…447, в перезрелых до 2 000 мкг/кг, причем в отличие от растений, в грибах может синтезироваться метилртуть. При варке рыбы и мяса концентрация ртути в них снижается, при аналогичной обработке грибов остается неизменной. Это различие объясняется тем, что в грибах ртуть связана с аминогруппами азотсодержащих соединений, в рыбе и мясе - с серосодержащими аминокислотами.

114