Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FREGRAVOL2.pdf
Скачиваний:
71
Добавлен:
05.06.2015
Размер:
8.65 Mб
Скачать

7.4 The New First Order Formalism

275

7.4 The New First Order Formalism

In Sect. 7.4.1 we describe the new formalism as an alternative to the action (7.3.11). Then in Sect. 7.4.2 we show how it allows the inclusion of world volume gauge fields and provides a first order formulation of the Born-Infeld action (7.3.5).

7.4.1 An Alternative to the Polyakov Action for p-Branes

To begin with we consider a world-volume Lagrangian of the following form:

L = Πia V b ηab ηi 1 e 2 · · · e d ε 1... d + a1Πia Πjb ηab hij e 1 · · · e d ε 1... d

+ a2(det h)α e 1 · · · e d ε 1... d

(7.4.1)

where a1, a2, α are real parameters to be determined and the other notations are recalled in (B.1.1) of Appendix B.1.

Performing the δΠia variation of the Lagrangian (7.4.1) we obtain:

ηab Vmb ηi 1 εm 2... d ε 1... d + 2(d!)a1ηab Πjb hij = 0

If we choose:

a1 = − 1 2d

then (7.4.2) is solved by:

Π b = V b ηip h1

m i pm

Let us then introduce the following three d × d matrices:

γij = Πia Πjbηab; Gij = Via Vjb ηab; G7 = ηGη

The solution (7.4.4) of the field equation (7.4.2) implies that:

γ = h1 T ηGηh1 = h1 T Gh7 1

(7.4.2)

(7.4.3)

(7.4.4)

(7.4.5)

(7.4.6)

Next let us consider the variation of the action (7.4.1) with respect to the symmetric matrix hij . In matrix form such a variational equation reads as follows:

a1γ a2αh1(det h)α = 0

(7.4.7)

Setting:

 

 

a2 =

a1

= − 1

(7.4.8)

α

 

2

 

276

 

 

 

 

7

The Branes: Three Viewpoints

(7.4.7) reduces to

 

 

 

 

 

 

 

 

 

γ = h1(det h)α

(7.4.9)

which can be solved by the ansatz:

 

 

 

 

 

 

h = γ 1(det γ )β

(7.4.10)

provided:

 

 

 

 

 

 

 

 

 

β =

α

 

 

(7.4.11)

 

 

 

 

 

 

 

 

+

1

 

On the other hand from (7.4.6) we get:

 

 

 

 

 

 

 

 

 

det γ = det G(det h)2

(7.4.12)

so that:

 

7

 

 

 

 

 

h

=

 

 

 

 

(7.4.13)

 

hG1h(det G)β (det h)2β

Equation (7.4.13) can be solved by the ansatz:

h = G(7 det G)p

(7.4.14)

provided:

α

p = − (7.4.15) 1

Combining the last two results we have the final solution for the two auxiliary fields h and γ :

h = G(det G)p ;

γ = G1(det G)2p

(7.4.16)

in terms of G which is

just the pull-back of the bulk metric onto the world volume,

7

7

 

expressed in flat components with respect to an arbitrary reference vielbein e that lives on W .

Using (7.4.16) we can rewrite the action (7.4.1) in second order formalism. The basic observation is that after implementation of the first order field equations the three terms appearing in (7.4.1) become all proportional to the same term, namely (det G)p det e dd ξ , having named ξ the world volume coordinates. Indeed we have:

(det h)α e 1

· · · e d ε 1... d

= d!(det G)p det e dd ξ

ηab Πia Πjb hij e 1

· · · e d ε 1... d

= d d!(det G)p det e dd ξ (7.4.17)

Πia V b ηab ηi 1 e 2

· · · e d ε 1... d

= d!(det G)p det e dd ξ

Hence the Lagrangian (7.4.1) becomes:

L = (d 1)!(det G)p det e dd ξ = (d 1)! 1 (det Gμν )p (det e)2p+1 dd ξ

2p

(7.4.18)

7.4 The New First Order Formalism

277

the second identity following from:

Gij = Vμa Vνb ηab μXμ ν Xν eiμejν = gμν μXμ ν Xν eiμejν

 

 

 

 

 

 

Gμν

 

 

 

 

(7.4.19)

det Gij = (det Gμν )(det e)2

 

 

 

 

where Gμν denotes the pull-back of the bulk space-time metric gμν onto the worldvolume of the brane.

If we choose:

p = −

1

α =

 

1

 

(7.4.20)

2

d

2

 

 

 

 

 

 

then the original world-volume Lagrangian (7.4.1), already transformed to the second order form (7.4.18) becomes proportional to the Nambu-Goto Lagrangian:

L = (d 1)!

det Gμν

dd ξ

(7.4.21)

In this way the reference vielbein eμi has disappeared from the Lagrangian. This result is supported by the calculation of the variation in δek of the first order action (7.4.1). After variation and substitution of the result for the first order equations δΠia and δhij all terms are already Kronecker deltas proportional to det G. With the choice p = −1/2 all terms in this stress energy tensor cancel identically.

Note also that if the transformation (7.3.18) is completed by setting:

Πia Ki k ηk Π a (det K)1

(7.4.22)

it becomes an exact local symmetry of the action (7.4.1).

In this way we have shown how the standard first order formalism for the NambuGoto action can be replaced by a new first order formalism involving the additional field hij . So far the matrix h was chosen to be symmetric. Including world-sheet vector fields corresponds to the generalization of the above construction to the case where h has also an antisymmetric part.

7.4.2Inclusion of a World-Volume Gauge Field

and the Born-Infeld Action in First Order Formalism

We consider a modification of the first order action (7.4.1) of the following form

L = Πia V b ηab ηi 1 e 2 · · · e d ε 1... d + a1Πia Πjb ηab hij e 1 · · · e d ε 1... d

+ a2

det h1

+

μF

α e 1 · · · e d ε 1... d

 

 

 

a

 

ij 2

 

 

3

 

 

 

d ε

 

 

 

WZT

(7.4.23)

+

F

F[ ]

 

e

· · ·

e

ij 3

... d

+

3

 

 

 

 

 

 

 

Zumino terms

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wess-

 

 

278

7 The Branes: Three Viewpoints

where

 

F[2] dA[1]

(7.4.24)

is the field strength of a world-volume 1-form gauge field, Fij = −Fj i is an antisymmetric 0-form auxiliary field and a3 is a further numerical coefficient to be determined. Furthermore WZT denotes the Wess-Zumino terms, i.e. the integrals on the world volume of various combinations of the Ramond-Ramond p-forms. These terms depend on the type of Dp-brane considered and will be discussed later in the case of the D3-brane.

Performing the δΠ a

variation we obtain:

 

 

 

i

 

 

 

 

 

 

 

 

 

(d 1)! ηab Vla ηil + 2a1ab Πja hij = 0

(7.4.25)

that is solved by:

 

 

 

 

 

 

 

 

 

 

a

1

 

a

h1

m

 

 

Πj

= −

 

Vm

j

(7.4.26)

 

2da1

and:

 

 

 

 

 

 

 

 

 

 

γ

1

 

h1Gh1

(7.4.27)

 

 

 

 

 

 

= (2da1)2

 

 

 

7

 

 

Varying in δhij we also obtain a result similar to what we had before, namely:

a1γ a2αh1 h1 + μF S1h1 det h1 + μF α = 0

(7.4.28)

where the suffix S denotes the symmetric part of the matrix to which it is applied. From the variation in δFij we obtain instead:

d!a2αμ h1 + μF A1 det h1 + μF α + 2(d 2)!a3F = 0 (7.4.29)

where the suffix A denotes the antisymmetric part of the matrix to which it is applied and where F is the antisymmetric matrix Fij of flat components of the field strength 2-form:

 

 

 

 

 

 

F[2] = Fij ei ej

 

Hence from δhij and δFij we get:

 

 

 

 

 

 

 

 

2(d 2)!a3

F

h

 

1

 

μ

1

det h

1

 

 

 

 

+

 

 

d a2αμ

 

 

 

=

 

 

F A

 

!

 

 

 

 

 

 

 

 

 

 

 

1

 

G

= h1

+ μF S1

det h1

 

 

4d2a1a2

α

 

 

 

 

7

 

 

 

 

 

 

 

 

Summing the two equations (7.4.31) together we obtain:

(7.4.30)

+ α

μF

(7.4.31)

+ α

μF

 

2(d 2)!a3

F

+

 

1

G

h

1

+

μ

 

 

1

det h

1

+

μ

F

α

(7.4.32)

 

 

 

 

 

 

 

d!a2αμ

4d2a1a2α 7

=

 

 

F

 

 

 

 

 

 

7.4 The New First Order Formalism

 

 

 

 

 

 

 

279

which can be uniquely solved by:

 

 

 

 

 

 

 

 

h1 + μF = (aG + bF )1 det(aG + bF ) β ;

β =

α

 

(7.4.33)

α d

1

7

 

 

 

7

 

 

 

 

 

where:

 

 

 

 

 

 

 

 

 

 

a

=

1

;

b

=

2(d 2)!a3

 

 

(7.4.34)

4d2a1a2α

 

 

 

 

d!a2αμ

 

 

 

The coefficients a1, a2, a3 are redundant since they can be reabsorbed into the definition of Πja , h and F ; so we fix them by imposing:

a1 = −

1

;

a = 1;

b = −

1

(7.4.35)

2d

μ

Hence using (7.4.34) and (7.4.35) we obtain:

a

2

= −

1

;

a

3 = −

d!a2α

=

 

d 1

(7.4.36)

2

2(d 2)!

4

 

 

 

At this point everything proceeds just as in the previous case. Indeed inserting (7.4.27), (7.4.26) back into the action (7.4.23) we obtain:

 

(d 1)!

 

a

d

 

 

 

1

 

 

Tr h

 

1G

 

2a

(d 2)

 

ij F

 

 

 

 

(2da

)2

 

F

 

2da

1

+

1

 

!

 

 

+

3

 

ij

 

 

 

 

 

 

 

1

 

 

 

 

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

+

a2d

 

det h1

+

μF

 

α det e dd ξ

 

 

 

 

 

(7.4.37)

 

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using (7.4.35) and (7.4.36), (7.4.37) becomes:

 

2

 

 

 

 

F

 

 

 

 

 

2α

 

 

 

 

 

+

 

 

F

 

 

 

 

 

 

 

 

 

(d 1)!

 

Tr h

1G

 

 

Tr(

 

F )

 

 

 

(d 1)!

 

det h

 

1

 

 

μ

 

 

α

det e dd ξ

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.4.38)

Now we consider the variation δe:

 

 

 

 

 

 

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4da1

 

 

 

 

 

 

 

 

 

3

 

 

F

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d

1)!

Tr Gh

1

 

 

 

2(d

 

 

2) a

Tr( F ) δt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4da

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

3

F

 

 

ip

 

 

 

 

 

 

 

 

 

 

 

2

(d

1)!

 

 

Gh

1

 

t

2(d

2) a

 

 

 

 

ti F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ a2d! det h1 + μF α δpt

= 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.4.39)

the solution is:

 

p

 

 

 

 

 

!

 

3 F

 

 

 

= − d 2

 

 

 

+

 

F

 

 

4da1

 

 

 

 

 

 

 

 

 

ip

 

 

 

p

 

(d 1)!

 

 

Gh

1

 

t

 

 

2(d

 

 

2) a

 

 

 

 

ti F

 

 

 

 

 

 

 

a2d

!

 

det

h

 

1

 

μ

 

α

δt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.4.40)

280

7 The Branes: Three Viewpoints

Using (7.4.35) and (7.4.36) in matrix form (7.4.40) becomes:

h1G F F =

 

 

1

 

det h1 + μF α 1

α(d

 

2)

7

 

 

 

 

 

 

 

 

 

Using the result:

 

 

 

 

 

 

 

 

 

det(aGij + bFij ) = det(aGμν + bFμν ) (det e)2

7

 

 

 

 

 

 

7

 

 

and implementing (7.4.41) for δe, we see that (7.4.38) becomes:

 

(d

1)

 

 

 

 

 

 

 

(det e) dd ξ

!

det h1 + μF α

α(d

2)

 

 

 

1)

 

 

 

 

 

(d

 

 

 

 

 

= (det e) dd ξ

 

!

det(aGij + bFij ) β

α(d

 

2)

 

 

 

 

 

 

1)

7

 

 

 

 

 

(d

 

= (det e)12β dd ξ

− !

det(aGμν + bFμν ) β

α(d 2)

 

 

 

 

 

 

 

7

Now we take β = 1/2 and so α = 1/(d 2). The action becomes:

SBI = (d 1)!

 

det Gμν

1

 

 

1/2

dd ξ

Fμν

 

 

 

μ

 

M4

 

7

 

 

 

 

For d = 4, which is the interesting case of the D3-brane we obtain:

a1 = −

1

;

a2 = −

1

;

a3 =

3

;

α = β =

1

 

 

 

 

 

 

8

4

4

2

(7.4.41)

(7.4.42)

(7.4.43)

(7.4.44)

(7.4.45)

In this way we have shown how the kinetic part of a Dp-brane action, namely the Born-Infeld type of Lagrangian can be written in first order formalism. The new formalism can be applied to all cases except d = 2 where the formulae become singular. This is just welcome since for d = 2 we have ordinary strings for which the Polyakov formalism is sufficient and no world-volume cosmological term is necessary. For d = 3, we are instead in the case of the M2 brane or of its descendant, the D2 brane, for which no Born-Infeld action is necessary either.

7.4.3Explicit Solution of the Equations for the Auxiliary Fields for F and h1

In the transition to second order formalism and in the discussion of κ-supersymmetry through the use of 1.5 order formalism we need the explicit solution of the first order equations and the expression of the auxiliary fields F , h1 in terms of the physical degrees of freedom. This is what we can do most conveniently by fixing the gauge

7.5 The D3-Brane Example and κ-Supersymmetry

281

related to the local symmetry (7.3.18) and (7.4.22). Our gauge choice is provided by setting:

G7 = η

(7.4.46)

which is identical with the yield (7.3.13) of the δei variation in the old first order formalism. This gauge can certainly be reached by using the degrees of freedom of GL(d, R)/SO(1, d 1). Taking (7.4.46) into account let us rewrite our constraint equations into matrix form. Equation (7.4.41) for the δe variation is:

h1G F F = det h1

+ μF α 1

(7.4.47)

7

 

 

and the other equation that we must solve is (7.4.33):

 

h1

 

μF

G

 

μ F

 

det G

 

μ F

1/2

(7.4.48)

 

 

 

 

 

1

 

 

+

 

 

1

 

=

 

1

 

 

 

 

7

 

 

7

 

 

 

 

Using our previous result for [det(h1 + μF )]α we conclude that we have the following linear system of matrix equations:

(h1 + μF )(G7 μ1 F ) = [det(G7 μ1 F )]1/21 h1G7 F F = [det(G7 μ1 F )]1/21

the solution in the gauge (7.4.46) is:

G7 = η

F = μ12 h1F η

= (1

μ12 F ηF η)[det

μ1 F )]1/2

 

 

 

 

 

(7.4.49)

(7.4.50)

Since the η metric just raises and lowers the indices we can just ignore it and write, in more compact form:

h =

η μ2 F 2

det η

μ F

1/2

(7.4.51)

 

 

1

 

 

1

 

 

7.5 The D3-Brane Example and κ -Supersymmetry

In this section we focus on the case d = 4 and we apply the new first order formalism to the description of the κ-supersymmetric action of a D3-brane. As emphasized above, κ-supersymmetry just follows, via a suitable projection, from the bulk supersymmetries as derived from supergravity, the type II B theory, in this case. The latter has a duality symmetry with respect to an SL(2, R) group of transformations that acts non-linearly on the two scalars of massless spectrum, the dilaton φ and the Ramond scalar C0. Indeed these two parameterize the coset manifold

282

7 The Branes: Three Viewpoints

SL(2, R)/O(2) and actually correspond to its solvable parameterization (see (6.8.3) in Sect. 6.8). Hence the D3-brane action we want to write, not only should be cast into first order formalism, but should also display manifest covariance with respect to SL(2, R). This covariance relies on introducing a two component charge vector qα that transforms in the fundamental representation of SU(1, 1) and expresses the charges carried by the D3 brane with respect to the 2-forms Aα[2] of bulk supergravity (both the Neveu Schwarz B[2] and Ramond-Ramond C[2]). According to the geometrical formulation of type IIB supergravity presented in Sect. 6.8 we set:

AΛ = B[2], C[2] ;

Aα = C α ΛAΛ

1

 

1

(7.5.1)

Aα=1 =

 

B[2] iC[2] ;

Aα=2 =

 

B[2] + iC[2]

2

2

and by definition we call εαβ qβ the orthogonal complement of qα :

qα qα = 1; qα qβ εαβ = 0 (7.5.2)

In terms of these objects we write down the complete action of the D3-brane as follows:

L= Πia V b ηab ηi 1 e 2 · · · e 4 ε 1... 4 + a1Πia Πjb ηab hij e 1 · · · e 4 ε 1... 4

+a2 det h1 + μF α e 1 · · · e 4 ε 1... 4

+a3F ij F[2] e 3 e 4 εij 3 4

+ νF F ia5qα εαβ Aβ F + a6C[4]

 

 

 

 

 

(7.5.3)

where C[4] is the 4-form potential, the coefficients

 

 

 

 

 

1

 

1

 

 

1

 

 

3

 

α =

 

;

a1 = −

 

; a2

= −

 

;

a3 =

 

(7.5.4)

2

8

4

4

have already been determined, while a5, a6, ν are new coefficients to be fixed by κ-supersymmetry. The first two are numerical, while ν will also depend on the bulk scalars. In the action (7.5.3)

F[2] dA[1] + qα Aα

(7.5.5)

is the field strength of the world-volume gauge field and depends on the charge vector qα . The physical interpretation of F[2] is as follows. By definition a Dp-brane is a locus in space-time where open strings can end or, in the dual picture, boundaries for closed string world-volumes can be located. The type IIB theory contains two kind of strings, the fundamental strings and the D-strings which are rotated one into the other by the SL(2, Z) SL(2, R) group. Correspondingly a D3 brane can be a boundary either for fundamental or for D-strings or for a mixture of the two. The charge vector qα just expresses this fact and characterizes the D3-brane as a

7.5 The D3-Brane Example and κ-Supersymmetry

283

boundary for strings of q-type. Furthermore the definition (7.5.5) of F[2] encodes the following idea: the world-volume gauge 1-form A[1] is just the parameter of a gauge transformation for the 2-form qα Aα , which in a space-time with boundaries can be reabsorbed everywhere except on the boundary itself. Note that if we take

1

 

 

qα =

 

(1, 1) we obtain:

 

2

 

 

 

 

qα Aα = B[2]; −iqα εαβ Aβ = C[2]

(7.5.6)

7.5.1 κ -Supersymmetry

Next we want to prove that with an appropriate choice of ν, a5 and a6 the action (7.5.3) is invariant against bulk supersymmetries characterized by a projected spinor

parameter. For simplicity we do this in the case of the choice qα = 1 (1, 1). For

2

other choices of the charge type the modifications needed in the prove will be obvious from its details.

To accomplish our goal we begin by writing the supersymmetry transformations of the bulk differential forms V a , B[2], C[2] and C[4] which appear in the action. From the rheonomic parameterizations (6.8.13), (6.8.14), (6.8.15), (6.8.16) we immediately obtain:

1

 

 

 

 

 

 

 

 

Γ a ψ

 

 

 

 

 

 

 

 

δV a = i

 

 

 

ε

 

Γ a ψ +

ε

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

δB[2] = −2i Λ+1 + Λ+2

 

 

Γ a ψ V a + Λ1 + Λ2

 

Γ a ψ V a

 

ε

ε

 

δC[2] = 2 Λ+1 Λ+2

 

Γ a ψ V a + Λ1

Λ2

 

Γ a ψ V a

(7.5.7)

ε

ε

δC[4] = −

1

 

 

Γ abc ψ

 

 

Γ abc ψ

V a V b V c

 

 

ε

ε

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

δ

C[

]

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

+ 1 B[2] δC[2] C[2] δB[2]

8

Note that in writing the above transformations we have neglected all terms involving the dilatino field. This is appropriate since the background value of all fermion fields is zero. The gravitino 1-form ψ is instead what we need to keep track of. Proving κ- supersymmetry is identical with showing that all ψ terms cancel against each other in the variation of the action. Relying on (7.5.7) the variation of the Wess-Zumino term is as follows:

δ νF[2] F[2] + a5C[2] F[2] + α6C[4]

 

 

 

= 2νB[2] δB[2] + a5B[2] δC[2]

 

 

 

1

a6B[2] δC[2] + a5C δB[2]

1

a6C[2] δB[2] + a6δC[4] (7.5.8)

+

 

 

 

8

8

284

7 The Branes: Three Viewpoints

if we set a6 = 8a5 the variation (7.5.8) simplifies to:

 

δ(WZT) = 2B[2] νδB[2] + a5δC[2] + 8a5δC[4]

(7.5.9)

and with such a choice the complete variation of the Lagrangian under a supersymmetry transformation of arbitrary parameter is:

δL = δLψ + δLψ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

δLψ

 

3 iΠ a,p

ε Γ b ψ ηab

 

 

μ1F ip

 

 

μ2F ip Via

 

ε Γa ψ

 

 

 

= − !

 

 

 

 

 

+

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 a5(ε Γabc ψ)Via Vjb Vk εij kp Ωp[3]

 

 

 

 

 

 

 

 

 

 

 

(7.5.10)

 

 

4

 

 

 

 

 

ε Γ b ψ

 

 

c

 

 

 

 

 

 

 

Via

 

 

 

 

 

 

 

δLψ

3 iΠ a,p

ηab

 

 

μ3F ip

 

 

μ4F ip

 

 

ε Γa ψ

 

 

= − !

 

 

 

 

 

 

+

 

+

 

 

 

 

 

 

 

 

 

 

 

 

+

3 a5

ε Γabc ψ Via Vjb

Vk

εij kp Ωp[3]

 

 

 

 

 

 

 

 

 

 

 

where:

 

4

 

 

 

 

 

 

 

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

μ1 = −8ia3 Λ1 + Λ2

 

; μ2 = 8

iν Λ1 + Λ2

+ a5 Λ1 Λ2

 

 

1

 

2

 

 

 

 

 

1

 

 

2

 

 

 

1

 

2

μ3 = −8ia3 Λ+

+ Λ+ ; μ4 = 8 iν Λ+

+ Λ+ + a5 Λ+

Λ+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.5.11)

Recalling (6.8.5) and (6.8.3) of Sect. 6.8 the above (7.5.11) become:

 

 

 

 

 

 

 

 

μ1 = −6ieφ/2;

 

 

μ2 = 8a5eφ2

 

 

 

 

 

 

 

 

 

 

(7.5.12)

 

 

 

 

 

μ3 = −6ieφ/2; μ4 = −8a5eφ2

 

 

 

 

 

 

 

 

 

 

 

where we have chosen:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν = −a5C[0 = a5 Re N

 

 

 

 

 

 

 

 

 

 

 

 

(7.5.13)

In the above equation we have introduced the complex kinetic matrix which would appear in a gauge theory with scalars sitting in SU(1, 1)/U(1) and determined by the classical Gaillard-Zumino general formula6 applied to the specific coset:

N =

 

1

2

 

 

 

= −

φ

 

 

i

Λ1

Λ2

 

 

Re N

C0

(7.5.14)

 

 

 

Im N

= e

 

 

 

Λ

+ Λ

 

 

 

 

6For a general discussion of the Gaillard-Zumino formula see Chap. 8, Sects. 8.3.18.3.2.

7.5 The D3-Brane Example and κ-Supersymmetry

285

It is convenient to rewrite the full variation (7.5.10) of the Lagrangian in matrix form in the 2-dimensional space spanned by the fermion parameters (ε, ε ):

 

 

 

 

 

 

δL = δLψ + δLψ =

 

 

 

A

ψ

 

(7.5.15)

ε,

ε

ψ

 

Ak

=

2 6iγk 34 a5γij l εij lmhmk

3F lm + μ4F lm)hmk γl

3

(7.5.16)

 

1F lm + μ2F lm)hmk γl

6iγk + 34 a5γij l εij lmhmk

 

 

where A = Ak Ω[k3], and Ω[k3] ηk ε ij k ei ej ek denotes the quadruplet of threevolume forms.

The matrix Ak is a tensor product of a matrices in spinor space and 2 × 2 matrices in the space spanned by (ε, ε ). It is convenient to spell out this tensor product structure which is achieved by the following rewriting:

Ak = f1γk 1 + f2γ˜ mhmk σ3 + f3Π1mhmk σ1 + f4Π2mhmk σ2

(7.5.17)

where:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f1 = −6i;

 

f3 = −6i;

 

 

f2 = −

4

a5;

f4 = −8ia5

 

 

(7.5.18)

 

 

 

 

 

 

 

 

 

3

 

 

and:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ m

γ

ij l

εij lm

;

 

Π m

eφ/2F lmγ

l ;

 

 

Π m

eφ/2F lm

γ

l

(7.5.19)

˜

 

 

 

 

1

 

 

 

 

2

 

 

 

now using (7.4.50), (7.4.51) we set

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

μ

= e

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Im N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

φ/2

 

 

 

 

 

 

 

 

(7.5.20)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and we obtain:

 

 

 

 

F7 Im N F

 

 

 

 

 

 

 

 

 

Π1mhmk = eφ/2F lmγl hmk = eφ/2eφ F h1 lmhmk γl Flk γ l

Πk

(7.5.21)

Π m

eφ/2F lmγ

F lmγ

l

Π m

 

 

 

 

 

 

 

 

7

 

 

 

2

 

 

 

 

 

 

l 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This observation further simplifies the expression of Ak which can be rewritten as:

Ak = f1γk 1 + f2γ˜ mhmk σ3 + f3Π k σ1 + f4Π mhmk σ2 (7.5.22)

The proof of κ-supersymmetry can now be reduced to the following simple computation. Assume we have a matrix operator Γ with the following properties:

[a]Γ 2 = 1

(7.5.23)

[b]Γ Ak = Ak

286

 

 

 

 

7

The Branes: Three Viewpoints

It follows that

 

 

 

 

P =

1

(1

Γ )

(7.5.24)

 

2

is a projector since P 2 = 1 and that

 

 

 

 

1

(1 Γ )Ak = 0

 

P Ak =

 

(7.5.25)

N

Therefore if we use supersymmetry parameters (κ, κ ) = (ε, ε )P projected with this P , then the action is invariant and this is just the proof of κ-supersymmetry.

The appropriate Γ is the following [37]:7

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

Γ =

 

 

[4] + ω[0])

σ3 + ω[2] σ2

 

(7.5.26)

N

where:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω[4] = α4εij kl γij kl

 

 

 

 

 

 

 

 

 

 

 

ij kl

 

 

 

 

 

 

 

 

 

ω[0]

= α0εij kl F7ij F7kl

 

 

 

 

(7.5.27)

 

 

 

ω[2] = α2ε

 

F7ij γkl

1/2

 

 

 

 

 

 

 

 

 

N = det± F )

 

 

 

 

 

 

and the coefficients are fixed to:

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α4 =

1

;

α0 =

1

;

α2 =

 

i

 

(7.5.28)

 

 

 

 

 

 

 

 

24

8

4

 

 

This choice suffices to guarantee property [a] in the above list. Property [b] is also verified if one chooses:

a5 =

3

(7.5.29)

4

The proof of the two properties is given in Appendix B.2. Essential ingredients in the proof are the following identities holding true for any antisymmetric tensor F7:

 

1

Tr F72 +

1

εij kl F7ij F7kl

2

det± F7) = −1 +

(7.5.30)

 

 

2

8

7In the paper quoted above the κ-supersymmetry projector presented here was originally introduced within a 2nd order formulation of the theory. It is particularly significant and rewarding that the same projector is valid also in first order formulation. As shown in the appendix the mechanism by means of which it works are very subtle and take advantage of the explicit solutions for the auxiliary fields in terms of the physical ones. In this way one finds an overall non-trivial check of all the algebraic machinery of our new first order formalism.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]