Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FREGRAVOL2.pdf
Скачиваний:
71
Добавлен:
05.06.2015
Размер:
8.65 Mб
Скачать

6.7 Type IIA Supergravity in D = 10

251

6.7.1Rheonomic Parameterizations of the Type IIA Curvatures in the String Frame

In order to present the result in its most compact form it is convenient to introduce a set of tensors, which involve both the field strengths Gab , GABCD of the RamondRamond p-forms and also bilinear currents in the dilatino field χL/R . The needed tensors are those listed below:

Mab = +

1

 

 

 

9

χ R ΓabχL,

 

 

 

 

 

exp[ϕ]Gab +

 

 

 

 

 

8

64

 

 

 

 

 

 

1

exp[ϕ]Gabcd

3i

 

 

 

 

 

Mabcd = −

 

 

 

 

 

 

 

 

χ

LΓabcd χR

 

 

16

256

 

 

N0 =

3

 

 

 

 

 

LχR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(6.7.20)

 

 

 

χ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nab =

1

exp[ϕ]Gab +

9

 

 

 

 

R ΓabχL = 2Mab

 

 

 

 

 

 

 

 

χ

 

 

4

32

 

 

Nabcd =

1

 

exp[ϕ]Gabcd +

 

 

 

1

 

 

 

R Γabcd χL = −

2

Mabcd

 

 

 

 

 

 

 

 

 

 

 

 

χ

 

24

128

3

The above tensors are conveniently assembled into the following spinor matrices

Z = NabΓ ab + 3Nabcd Γ abcd

M± = i MabΓ ab + Mabcd Γ abcd N±(even) = N01 + NabΓ ab Nabcd Γ abcd

N±(odd) = ±

i

1

 

 

 

 

 

 

fa Γ a ±

 

 

χ

R/LΓabcχR/LΓ abc

3

64

La(±odd) = M Γa ;

La(±even) =

3

HabcΓ bc

 

8

(6.7.21)

(6.7.22)

(6.7.23)

i HabcΓ abc (6.7.24) 12

(6.7.25)

In terms of these objects the rheonomic parameterizations of the curvatures, solving the Bianchi identities can be written as follows:

Bosonic Curvatures

 

Ta = 0

(6.7.26)

Rab = RabmnV m V n +

ψ

R Θmab|L V m +

ψ

LΘmab|R V m

 

+i 3 L ΓcψL ψR ΓcψR )H abc

4

+

 

L Γ [a Z Γ b]ψR

(6.7.27)

ψ

H[3] = HabcV a V b V c

(6.7.28)

252 6 Supergravity: The Principles

G[2] = GabV a V b + i

3

exp[−ϕ]LΓa ψL +

 

R Γa ψR ) V a

(6.7.29)

 

 

χ

2

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f[1] = fa V a +

 

 

 

 

R ψL

 

LψR )

 

 

 

 

 

 

(6.7.30)

 

 

χ

 

 

 

 

 

 

2

 

 

 

 

 

 

G[4] = Gabcd V a V b V c V d

 

 

 

 

 

 

 

i

1

 

 

 

 

 

 

 

 

 

LΓabcψL

 

R ΓabcψR ) V a V b V c

(6.7.31)

 

 

exp[−ϕ]

χ

 

2

Fermionic Curvatures

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρL/R =

 

 

L/R

a

V

b

 

 

(even)

 

 

(odd)

(0,2)

(6.7.32)

ρab V

 

 

 

 

+ La±

ψL/R + La

ψR/L + ρL/R

χL/R = Da χL/R V a + N±(even)ψL/R + N (odd)ψR/L

(6.7.33)

Note that the components of the generalized curvatures along the bosonic vielbeins do not coincide with their spacetime components, but rather with their supercovariant extension. Indeed expanding for example the four-form along the spacetime differentials one finds that

Gμνρσ Gabcd Vμa Vνb Vρc Vσd

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

μC[4]

B[2]

ρ C[1]

 

 

 

 

 

 

 

 

 

 

 

 

 

=

eϕ

L[μ

Γνρ ψ

]

+

ψ

R[μ

Γνρ ψ

)

2

[

 

νρσ ] +

[μν

 

σ ]

 

 

 

 

 

 

 

]

 

 

+ i

1

 

 

 

 

LΓ[μνρ ψ]

 

 

R Γ[μνρ ψ])

 

 

 

 

(6.7.34)

 

 

exp[−ϕ]

χ

 

 

 

 

 

2

 

 

 

 

where G is the supercovariant field strength. In the parameterization (6.7.27) of the Riemann tensor we have used the following definition:

Θab|cL/R = −i(Γa ρbcR/L + ΓbρcaR/L ΓcρabR/L)

(6.7.35)

Finally by ρL/R(0,2) we have denoted the fermion-fermion part of the gravitino curvature whose explicit expression can be written in two different forms, equivalent by Fierz rearrangement:

 

21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρL/R(0,2) = ±

 

Γa χR/LψL/R Γ a ψL/R

 

 

32

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Γa1a2a3a4a5 χR/L ψL/R Γ a1a2a3a4a5 ψL/R

 

(6.7.36)

 

 

 

 

 

2560

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρL/R(0,2) = ±

3

 

 

 

 

 

3

 

 

 

 

R/LΓ abψL/R

 

 

iψL/R

 

χ

R/LψL/R ±

 

iΓabψL/R

χ

(6.7.37)

8

16

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]