Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Jack H.Dynamic system modeling and control.2004.pdf
Скачиваний:
73
Добавлен:
23.08.2013
Размер:
5.61 Mб
Скачать

math guide - 34.51

(ans. a)

16

 

 

16

 

16

 

 

 

 

 

 

 

 

(---------------------4j + 4) 2

= ------------------------------------16

+ 32j + 16

= 32-------j

= –0.5j

 

 

 

 

 

b)

3j + 5

=

3j + 5

=

3j + 5

– 7

24j

=

– 35 – 141j + 72

=

37 – 141j

 

(---------------------4j + 3) 2

---------------------------------

 

---------------------

--------------------

---------------------------------------

----------------------

 

 

– 16 +

24j + 9

 

– 7 + 24j – 7

24j

 

49 + 576

 

625

c) ( 3 + 5j) 4j = 12j + 20j2 = 12j – 20

2. For the shape defined below,

a)find the area of the shape.

b)find the centroid of the shape.

c)find the moment of inertia of the shape about the centroid.

y

y = ( x + 2) 2

x

4

34.5MATRICES AND VECTORS

34.5.1Vectors

Vectors are often drawn with arrows, as shown below,

head terminus

A vector is said to have magnitude (length or strength) and direction.

origin tail

math guide - 34.52

• Cartesian notation is also a common form of usage.

 

 

y

 

 

 

 

 

 

 

 

 

 

 

j

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

becomes

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

y

 

 

 

 

 

 

 

 

 

k

 

 

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Vectors can be added and subtracted, numerically and graphically,

A = ( 2, 3, 4)

A + B = ( 2 + 7, 3 + 8, 4 + 9)

B = ( 7, 8, 9)

A B = ( 2 – 7, 3 – 8, 4 – 9)

Parallelogram Law

B

A+B

 

A

A

 

 

B

34.5.2Dot (Scalar) Product

We can use a dot product to find the angle between two vectors

math guide - 34.53

cos θ

 

F1 F2

 

 

 

=

 

-----------------

 

 

 

 

F1

 

F2

 

 

 

 

 

 

 

 

 

( 2) ( 5) + ( 4) ( 3)

 

 

θ

=

acos

------------------------------------------

 

 

 

 

 

 

 

 

 

 

 

 

22 + 42 52 + 32

 

 

 

 

 

 

 

22

 

 

 

 

θ

=

 

 

----------------------

= 32.5

°

acos

( 4.47) ( 6)

y

F2

= 5i + 3j

θ

 

F1

= 2i + 4j

 

 

 

x

• We can use a dot product to project one vector onto another vector.

We want to find the component of force F1 that projects onto the vector V. To do this we first convert V to a unit vector, if we do not, the component we find will be multiplied by the magnitude of V.

x

z

=

( – 3i + 4j + 5k) N

F1

V = 1j + 1k

y

 

 

V

1j + 1k

 

 

 

F1

λV

 

 

 

 

 

=

-----

 

 

= -------------------- = 0.707j + 0.707k

 

 

 

 

 

 

V

 

 

12 + 12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F1V

= λV F1 = ( 0.707j + 0.707

k

) • ( – 3i + 4j + 5

k

) N

 

 

 

 

F1V

= ( 0) ( –3) + ( 0.707) ( 4) + ( 0.707) ( 5)

= 6N

V

 

F1V

• We can consider the basic properties of the dot product and units vectors.

math guide - 34.54

Unit vectors are useful when breaking up vector magnitudes and direction. As an example consider the vector, and the displaced x-y axes shown below as x’-y’.

y

F

= 10N

 

 

y’

 

x’

 

 

45°

 

60°

 

 

 

x

We could write out 5 vectors here, relative to the x-y axis,

x axis = 2i y axis = 3j

x‘ axis = 1i + 1j y‘ axis = – 1i + 1j

F = 10N 60° = ( 10 cos 60° ) i + ( 10 sin 60° ) j

None of these vectors has a magnitude of 1, and hence they are not unit vectors. But, if we find the equivalent vectors with a magnitude of one we can simplify many tasks. In particular if we want to find the x and y components of F relative to the x-y axis we can use the dot product.

λx

= 1i + 0j

(unit vector for the x-axis)

Fx

= λx F

= ( 1i +

0j) • [ ( 10 cos 60° ) i + ( 10 sin 60° ) j]

 

= ( 1) ( 10 cos 60

° ) + ( 0) ( 10 sin 60° ) = 10N cos 60°

This result is obvious, but consider the other obvious case where we want to project a vector onto itself,

math guide - 34.55

λF =

F

 

10 cos 60° i + 10 sin 60° j

= cos 60° i + sin 60° j

-----

=

--------------------------------------------------------

F

 

 

 

 

10

 

Incorrect - Not using a unit vector

FF = F F

=( ( 10 cos 60° ) i + ( 10 sin 60° ) j) • ( ( 10 cos 60° ) i + ( 10 sin 60° ) j)

=( 10 cos 60° ) ( 10 cos 60° ) + ( 10 sin 60° ) ( 10 sin 60° )

= 100( ( cos60° ) 2 + ( sin 60° ) 2) = 100

Using a unit vector

FF = F • λF

=( ( 10 cos 60° ) i + ( 10 sin 60° ) j) • ( ( cos 60° ) i + ( sin 60° ) j)

=( 10 cos 60° ) ( cos 60° ) + ( 10 sin 60° ) ( sin 60° )

= 10( ( cos 60° ) 2 + ( sin 60° ) 2) = 10

Correct

Now consider the case where we find the component of F in the x’ direction. Again, this can be done using the dot product to project F onto a unit vector.

ux'

= cos 45° i + sin 45° j

 

 

Fx'

= F • λx' = ( ( 10 cos 60

° ) i + ( 10 sin 60° ) j) • ( ( cos 45° ) i + ( sin 45° ) j)

 

= ( 10 cos 60° ) ( cos 45° )

+ ( 10 sin 60

° ) ( sin 45° )

 

= 10( cos 60° cos 45° + sin 60° sin 45

° ) = 10( cos ( 60° – 45° ) )

Here we see a few cases where the dot product has been applied to find the vector projected onto a unit vector. Now finally consider the more general case,

math guide - 34.56

y

 

V2

 

V1

θ 2

V2V 1

 

θ 1

 

x

First, by inspection, we can see that the component of V2 (projected) in the direction of V1 will be,

V2V 1 = V2 cos ( θ 2 θ 1)

Next, we can manipulate this expression into the dot product form,

=

 

V2

 

 

 

( cos θ

1 cos θ

2 + sin θ

 

1 sin θ 2)

 

 

 

 

 

 

 

 

 

 

=

 

 

V2

 

 

[ ( cos θ 1i + sin θ 1j)

• ( cosθ 2i + sin θ 2j) ]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V1

V2

 

 

 

 

 

V1 V2

 

 

V1 V2

• λV1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

V2

 

 

 

 

--------

 

--------

 

 

=

V2

 

 

 

-----------------

 

=

----------------- = V2

 

 

 

 

 

 

 

 

 

 

V1

 

 

V2

 

 

 

 

 

 

 

V1

 

V2

 

 

 

V1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Or more generally,

 

 

 

 

 

 

cos ( θ

2 θ

1)

 

 

 

 

 

 

 

 

 

 

 

 

V1

V2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V2V1

=

 

V2

=

 

 

V2

 

 

 

-----------------

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V1

 

V2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cosθ( 2 θ

1)

 

 

 

 

 

 

 

 

 

 

 

V1

V2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V2

=

V2

 

 

 

 

 

-----------------

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V1

 

 

V2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos ( θ

2 θ 1)

 

 

 

V1

V2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

-----------------

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V1

 

 

V2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Note that the dot product also works in 3D, and similar proofs are used.