Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3 курс / Фармакология / Иванова_Л_А_ред_Технология_лекарственных_форм_Том_I.doc
Скачиваний:
1
Добавлен:
24.03.2024
Размер:
3.26 Mб
Скачать
  1. Измельчение (pulveratio)

Цель стадии измельчения — достижение более быс+рого и полного эффекта, получение наиболее рав­номерной порошковой смеси за счет уменьшения раз­мера частиц и увеличения их количества. Повышение терапевтической эффективности с .увеличением измель- ченности лекарственных веществ объясняется тем, что измельчение всегда приводит к увеличению площади поверхности, а следовательно, и увеличению свободной поверхностной энергии, так как изменение свободной по­верхностной энергии пропорционально произведению изменения площади поверхности на поверхностное на­тяжение и выражается уравнением:

AF = AS-o,

где AF — изменение«свободной поверхностной энергии, н/м; AS — изменение площади поверхности, м2; о — поверхностное натяжение, н/м.

Из курса физики известно, что свободная поверх­ностная энергия — это сумма неуравновешенных моле­кулярных сил, находящихся на поверхности данного вещества. Запас свободной поверхностной энергии имеет большое значение для технологии лекарствен­ных форм, так как приводит к увеличению терапевти­ческой активности лекарственных веществ. Объясня­ется это тем, что по следствию 2-го закона термодина­мики всякое тело стремится к уменьшению свободной поверхностной энергии, в связи с чем тонко измель­ченные лекарственные вещества быстрее всасываются, растворяются, адсорбируют выделения кожи и т. д.

Усиление терапевтического действия при уменьше­нии размера частиц лекарственных веществ наблюда­ется в любой лекарственной форме — суспензиях, ма­зях и др., поэтому при измельчении важно соблюдать технологические правила и приемы с целью достиже­ния оптимального размера частиц и усиления терапев­тического действия. Однако при максимальном из­мельчении лекарственных веществ могут наблюдаться и отрицательные явления — уменьшение свободной поверхностной энергии в процессе диспергирования за счет адсорбции из воздуха влаги и газов. При этом порошковая смЬсь становится рыхлой, иногда отсыре­вает. Кроме того, слипаются частицы, образуя более крупные агрегаты, а вещества адсорбируются на стен­ках ступки.

В определенный момент может наступить подвиж­ное равновесие, число измельченных частиц становит­ся равно числу вновь образующихся, т. е. процесс стабилизируется. Дальнейшее измельчение в данных условиях не имеет смысла и для того, чтобы преодо­леть это явление, необходимо насытить свободную по­верхностную энергию частиц. Для этого существуют специальные приемы, исключающие агломерирование уже полученных тонких частиц. Более тонкое измель­чение можно получить: измельчая лекарственные вещества в присутствии твердых индифферентных веществ (сахароза, лактоза); добавляя летучие жидко­сти (этанол). Жидкость не только насыщает свобод­ную поверхность порошка, но и облегчает измельче­ние, оказывая расклинивающее дйствие. Примером может служить измельчение камфоры, йода в присут­ствии этанола. Если этанол добавлен в количестве, достаточном для растворения вещества, то при его ис-

парении происходит явление рекристаллизации и лекарственное вещество, например йод, распреде­ляется в виде мельчайших частиц по всей массе по­рошка.

В аптечной практике при измельчении лекарствен­ных веществ, которые по структуре могут быть аморф­ными и кристаллическими, используют, как правило, истирание в комбинации с раздавливанием. С этой целью применяют аптечные ступки с пестиком. Ступки выпускают различных форм и размеров. Чаще всего- используют фарфоровые ступки, которые в зависимо­сти от рабочего объема бывают семи номеров (табл. 8.1).

Таблица 8.1. Размеры аптечных ступок

Рабочая поверх­ность

Рабочий

объем,

Время

измель­

Нагрузка, г

ступки

Диаметр,

см2

чения,с

опти­

мальная

макси­

мальная

мм

см2

коэф­

фициент1

1

50

45

1

20

60

0,5

1.0

2

75

90

2

80

90

1,5

4,0

3

86

90

2

80

90

1.5

4,0

4

110

135

3

160

120

3,0

8,0

5

140

225

5

320

150

6,0

16,0

6

184

450

10

960

210

18,0

48,0

\7

243

765

17

2240

300

42,0

112,0

1 Коэффициент показывает, во сколько раз возрастают потери вещества при увеличении размера ступки по сравнению с потерями при использо­вании ступки № 1.

Пестик, с помощью которого измельчают находя­щиеся в ступке лекарственные вещества, должен соот­ветствовать размеру ступки.

Для каждого размера ступки имеются максимумы загрузок, которые не должны превышать '/го ее объ­ема, с тем, чтобы обеспечить оптимальное измельчение лекарственных веществ. Необходимо строго соблюдать и время измельчения лекарственных веществ, указан­ное в табл. 8.1. Недостаточное время приводит к не-

полному измельчению, превышение его может привести к уменьшению суммарной поверхности порошка за счет агрегации измельченных частиц.

При измельчении в ступке нескольких лекарствен­ных веществ одновременно каждое из них измельча­ется независимо друг от друга, поэтому в ступке ра­циональнее измельчать смесь веществ. Исключение представляют трудноизмельчаемые вещества, где необ­ходимо использование специальных приемов, о чем указано ранее (добавление индифферентных веществ, этанола).

Примерами более быстрого совместного измель­чения лекарственных веществ могут быть следую­щие. Смесь глюкозы и кислоты аскорбиновой до рав­ного размера частиц измельчается за 90—95 с, в то время как одна глюкоза — за 118—120 с. Смесь аналь­гина и фенацетина измельчается за 80—82 с, фенаце­тин отдельно — за 93—95 с.

Снаружи ступки покрывают глазурью, их внутрен­няя поверхность пористая. При измельчении неболь­шое количество лекарственных веществ теряется в по­рах ступки. Количество потерь определяется структу­рой вещества и для того, чтобы установить последова­тельность их добавления, необходимо знать величину потерь лекарственных веществ в ступках. При этом следует учитывать относительные потери. И. А. Му­равьевым и В. Д. Козьминым экспериментально опре­делены размеры потерь для многих лекарственных веществ при измельчении в ступке № 1, они представ­лены в табл. 8.2. Для ступок других размеров величи­ну потери, рассчитанную для ступки № 1, умножают на коэффициент рабочей поверхности (см. табл. 8.1, графа 4).

Учитывая величину относительных потерь, измель­чение следует начинать с того вещества, потери кото­рого в порах ступки наименьшие. Для облегчения пользования ступкой во Всесоюзном научно-исследова- Тельском институте фармации М3 СССР предложено приспособление для ее крепления на столе (рис. 8.1), состоящее из ступкодержателя (1), сменных резино­вых колец (2) с резиновой прокладкой (3), защищаю­щей поверхность стола (4) от повреждений. Струб­цину закрепляют на столе, а на штырь (5) насажива­ют ступкодержатель таким образом, чтобы прорези в ступке (6) совпадали с фиксатором (7) на штыре.

Таблица 8.2. Потери твердых лекарственных веществ при растирании в ступке № 1

Лекарственное вещество

По­

Лекарственное вещество

По­

те­

те­

ри,

ри,

мг

мг

Амидопирин

37

Анальгин

22

Анестезин

24

Антипирин

10

Барбамил

41

Барбитал

13

Барбитал-натрий

12

Бромкамфора

15

Бутадион

36

Висмута нитрат основной

42

Гексаметилентетрамин

26

Глюкоза

7

Дибазол

Кальция карбонат осажден­

18

ный

14

Кислота аскорбиновая

12

Кислота ацетилсалициловая

33

Кислота никотиновая

15

Кислота салициловая

55

Кодеин и кодеина фосфат

7

Кофеин

15

Кофеин-бензоат натрия

16


Магния оксид 16 Натрия гидрокарбонат 11 Норсульфазол 2'2 Осарсол 15 Папаверина гидрохлорид 10 Ртути окись желтая 26 Ртути амидохлорид 22 Сахар 21 Сера очищенная и осажден­ная 24 Стрептоцид 23 Стрептоцид растворимый 41 Сульфадимезин 18 Танин 11 Теобромин 18 Теофиллин 16 Фенацетин 19 Фенилсалицилат 24 Фенобарбитал 18 Фитин 18 Цинка оксид 36 Этазол 18

О-

Рис, 8.1. Приспособление для закрепления ступок. Объяснение в тексте.

Затем в металлическое кольцо ступкодержателя поме­щают соответствующее резиновое кольцо, в котором и закрепляют ступку.

Взамен ступок для измельчения твердых лекарст­венных веществ предложены малогабаритные аппара­ты различной конструкции, например аппарат М. X. Ис­ламгулова (рис. 8.2).

Внешне аппарат М. X. Исламгулова напоминает электрическую мельницу, в которой измельчающая камера укорочена до уровня ножа, вращающегося со скоростью до 18 000 об/мин. На эту камеру навинчи­вают крышку, имеющую форму перевернутой ступки. Все ингредиенты смеси для приготовления порошка помещают в крышку-ступку, накрывают мельницей в положении сверху вниз, затем мельницу переворачива­ют, включают электродвигатель и в течение 1—2 мин производят измельчение с одновременным смешива­нием.

В комплекте имеются крышки-ступки трех разме­ров, вместимостью: 1—70 см3 (в них измельчают от 1 до 11 г вещества); 2—150 см3 (11—40 г вещества); 3 — 360 см3 (до 100 г вещества).

При измельчении лекарственных веществ в аптеках целесообразно использовать кофемолки.

  1. Просеивание (cubratio)

Порошки являются полидисперсными, когда содер­жат частицы разного размера, и монодисперсными, если частицы имеют одинаковый размер. Последние практически не существуют. Имеются лишь некоторые порошки, по составу приближающиеся к монодисперс- ным, например ликоподий (споры плауна).

Цель просеивания — получение продукта с одина­ковым размером частиц. Просеивание в аптечной прак­тике используют крайне редко. Размер частиц порошка определяют визуально. В аптеке обычно просеивают измельченное лекарственное растительное сырье. С це­лью соблюдения техники безопасности при просеива­нии сито закрывают крышкой, это особенно важно при работе с ядовитыми и легкораспыляющимися веще­ствами.

Распределение частиц по размерам определяют си­товым анализом, руководствуясь фармакопейной стать­ей «Измельчение и просеивание».

В ряде случаев наиболее важной характеристикой дисперсности порошков является их удельная поверх­ность. От этой величины, как указывалось ранее, зави­сит интенсивность различных процессов: всасывания, адсорбции и т. д.