Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_gidravlika.doc
Скачиваний:
12
Добавлен:
23.09.2019
Размер:
1.25 Mб
Скачать

30.Закон внутреннего трения Ньютона

Закон вязкого трения Ньютона гласит, что сила внутреннего трения F пропорциональна изменению скорости жидкости v в направлении, перпендикулярном движению, и зависит от площади S соприкосновения элементов жидкости. Коэффициент пропорциональности в нём называется коэффициентом динамической вязкости (η).

Жидкости, в которых внутреннее трение подобным образом зависит от изменения скорости, называются жидкостями с линейной вязкостью, или ньютоновскими жидкостями. В более строгой формулировке линейная зависимость вязкого трения от изменения скорости движения жидкости называется уравнением Навье-Стокса. Оно учитывает сжимаемость жидкостей и газов и справедливо не только вблизи поверхности твёрдого тела, но и в каждой точке жидкости. Любые газы, для которых выполняется условие сплошности, подчиняются уравнению Навье-Стокса, т. е. являются ньютоновскими жидкостями.

32.Ур-ние Новье-Стокса

Рассматрим влияние сил вязкого трения на движение жидкости. Будем считать, что частица в форме параллелепипеда движется вдоль оси X. За счёт сил вязкого трения на верхнюю и нижнюю поверхности рассматриваемого объёма будут действовать силы трения. Эти силы зависят от площади трения и величины касательного напряжения на поверхностях трения. На нижней поверхности сила трения будет:

на верхней она будет отличаться на величину приращения касательных напряжение вдоль оси z. Равнодействующая этих сил, действующая на рассматриваемый объём будет равна разности сил трения . Напряжение внутреннего трения, обусловленного вязкостью, по закону жидкостного трения имеет вид: .

После подстановки получим:

Если представить скорости являются функциями трёх координат х, y, z. В таком случае проекция силы вязкого трения на ось x в пересчёте к единице массы даёт величину: Аналогичные выражения можно записать для двух других координат. В итоге получим:

ур-ние Навье-Стокса

33 Критерии гидродинамического подобия

Рассмотрим условия, которые должны быть выполнены для динамического подобия потоков жидкости. Движение жидкости в природе совершается под действием различных сил, которые можно приближенно классифицировать на три группы:

1) внешние силы по отношению к жидкости, например, силы тяжести, инерции, силы, обусловленные перепадом давления;

2) силы, связанные с физическими свойствами самой жидкости, такие, как силы вязкости или силы поверхностного натяжения;

3) результирующие силы типа силы сопротивления воды движению тела или силы воздействия жидкости на гидротехническое сооружение.

Каждая из этих сил выражается через физические величины (размерные коэффициенты), характеризующие природу сил и жидкости. Влияние указанных сил проявляется в неодинаковой степени в различных явлениях. Одни явления протекают под преобладающим действием сил тяжести и сопротивления, другие – сил тяжести, со противления и поверхностного натяжения или только сил тяжести и поверхностного натяжения и т.д.

Условия гидродинамического подобия модели и натуры требуют равенства на модели и в натуре отношений всех сил, под действием которых протекает явление.

Для установления условий (критериев) гидродинамического подобия необходимо рассмотреть дифференциальные уравнения движения, описывающие изучаемое явление. Предполагая, что два потока, обтекающие тело, будут гидродинамически подобны, эти потоки должны принадлежать к одному классу уравнений, т.е. описываться однотипными уравнениями.

Движение вязкой несжимаемой жидкости, которое мы будем рассматривать, записывается системой дифференциальных уравнений Навье – Стокса [85]

 (8.7)

где  X, Y, Z – проекции вектора напряжения массовых сил на оси координат.

Эти уравнения являются математическим выражением равновесия внешних сил, приложенных к жидкости (например, сил тяжести), сил инерции, сил давления и сил внутреннего трения (сил вязкости).

Левые части уравнений (8.7) представляют собой проекции полных ускорений, которые в развернутом виде определяются следующими выражениями:

  (8.8)

Для установившегося движения жидкости частные производные равны нулю.

Подставим в уравнение Навье – Стокса значения полных ускорений

  (8.9)

  (8.10)

На основе анализа уравнений Навье – Стокса, записанных в форме (8.8), получим основные критерии подобия вязкой несжимаемой жидкости. Поскольку два подобных явления различаются между собой только лишь постоянными множителями для каждой одноименной величины (константами подобия), можно перейти от уравнений справедливых для натурного потока, к уравнениям, относящимся к модельному потоку, умножая каждую величину, входящую в уравнение (8.8) на соответсвующую константу подобия.

Введем следующие обозначения констант подобия: lu – масштаб скоростей; lt – масштаб времени; lq – масштаб массовых сил; lP – масштаб сил давлений; le – масштаб длин и линейный масштаб; ln – масштаб коэффициента кинематической вязкости; lr – масштаб плотности.

Эти константы называют масштабом подобия.

Для анализа возьмем одно из уравнений (8.9), например, уравнение движения в проекции на ось OZ. Для натуры имеем

  (8.11)

Для того чтобы это уравнение описывало движение модельного потока, умножим уравнение (8.11) на соответствующие масштабы подобия

  (8.12)

Для подобных явлений системы уравнений (8.11) и (8.12) должны быть тождественны. Они будут тождественны, если коэффициенты при членах дифференциального уравнения (8.12), составленные из масштабов подобия, будут равны между собой, т.е.

  (8.13)

Разделив каждый из членов равенства (8.13) на  , получим

  (8.14)

Записав каждое из уравнений (8.14) в отдельности и переходя от масштабов подобия к критериям подобия, получим следующие соотношения:

  (8.15)

Следовательно, достаточным условием динамического подобия течения вязкой несжимаемой жидкости является выполнение четырех соотношений (8.15) для любых двух соответственных точек.

Каждый из членов равенства (8.15) есть безразмерное число и представляет собой критерий подобия. Более удобно для практических целей пользоваться обратными значениями безразмерных величин, входящих в уравнение (8.15), что, конечно, не меняет смысла этих уравнений. Таким образом, в качестве критериев гидродинамического подобия запишем следующие безразмерные числа:

число Фруда (критерий Фруда)

  (8.16)

число Рейнольдса (критерий Рейнольдса)

  (8.17)

число Эйлера (критерий Эйлера)

  (8.18)

число Струхаля (критерий Струхаля)

  (8.19)

Рассмотрим физический смысл введенных чисел. Записанное соотношение (8.13) можно представить в форме определяющих параметров

При переходе к безразмерной форме необходимо это равенство разделить на множитель   характеризующий силы инерции, т.е. производим деление сил различной природы на силы инерции. Поэтому безразмерные числа соответственно характеризуют отношения: число Фруда – сил тяжести к силам инерции; число Эйлера – сил давления к силам инерции; число Рейнольдса – сил вязкости к силам инерции.

Число Струхаля характеризует инерционные гидродинамические силы, возникающие при нестационарном движении жидкости.

Перечисленные критерии подобия (условия подобия) зависят от природы сил, действующих на модель и натуру. Так как движение жидкости совершается под совокупным действием различных сил – силы давления, трения (сопротивления), тяжести, инерции, поверхностного натяжения, то для соблюдения динамического подобия необходимо выполнить одновременно подобие всех сил различной природы, т.е. выдержать все критерии подобия.

Каждое из этих равенств выражает условие динамического подобия лишь для определенной категории сил, действующих в жидкости, поэтому каждое равенство в отдельности выражает условие частичного динамического подобия для соответствующих сил.

Практическая и физическая невозможность одновременного выполнения условий полного подобия заставило исследователей искать частные критерии подобия, выражающие условия подобия в случае, когда в качестве преобладающей выступает одна из действующих сил.

  (8.20)

При установлении правил моделирования необходимо дать оценку "удельного веса" отдельных категорий сил в изучаемом явлении и моделирование производить по превалирующим силам. Например, при исследовании законов гидравлических сопротивлений трубопроводов главную роль играют силы трения. При исследовании протекания жидкости через водосливы превалирующими силами являются силы тяжести и т.д.

Иногда исследователь вынужден устанавливать "масштабные поправки", т.е. коэффициенты перевода по тому или иному критерию данных лабораторных исследований на натуру.

Во всех перечисленных случаях подобие между моделью и натурой является приближенным, а степень приближения зависит от искусства экспериментатора и подлежит количественной оценке на основе специально выполненных опытов.

Рассмотрим гидродинамическое подобие в случае преобладающего влияния одной из действующих сил

34Поскольку при турбулентном режиме течения происходит расход энергии потока на преодоление вязкости при турбулентных колебаниях, гидравлические потери при ламинарном режиме течения жидкости значительно меньше, чем при турбулентном. Так, например, если бы в системах водоснабжения и отопления при существующих скоростях движения жидкостей возможно было бы поддерживать ламинарный режим течения, то напор насосов можно было бы уменьшить в 5—10 раз[источник?]. Изменение режима течения с ламинарного на турбулентный вызывает скачкообразное увеличение сопротивления (при некоторых скоростях, т.е. в некотором диапазоне чисел Рейнольдса, ламинарное течение неустойчиво, но в определённых условиях может существовать). В то же время коэффициент гидравлического сопротивления при ламинарном режиме обычно получается больше, чем при турбулентном, поскольку для ламинарных режимов характерны более низкие скорости. При ламинарном режиме сопротивление примерно линейно зависит от скорости (соответственно, коэффициент примерно линейно падает, например, в круглых трубах ). При турбулентном режиме в гидравлически гладких трубах (при небольших шероховатостях и небольших Re) зависимость имеет иной характер (для круглых труб ) и во всех практически реализуемых случаях лежит выше зависимости для ламинарного режима; при бо́льших числах Рейнольдса под влиянием шероховатости график λ претерпевает сложный изгиб, и начиная с некоторого критического значения при Re>Reкр (область автомодельности) λ зависит только от шероховатости.

35.Ур-ние Дарси

Потери напора по длине, иначе их называют потерями напора на трение , в чистом виде, т.е. так, что нет никаких других потерь, возникают в гладких прямых трубах с постоянным сечением при равномерном течении. Такие потери обусловлены внутренним трением в жидкости и поэтому происходят и в шероховатых трубах, и в гладких. Величина этих потерь выражается зависимостью

- коэф. сопротивл., обусловленный трением по длине.

При равномерном движении жидкости на участке трубопровода постоянного диаметра d длиной l этот коэф. сопротивл. прямо пропорционален длине и обратно пропорционален диаметру трубы

– коэффициент гидравлического трения

Если считать что длина участка трубы=его диаметру, то потери напора по длине выражаются ф-лой Дарси:

Если рассм. Не круглые трубы, то вычисл. h в зав-ти от гидравлич.радиуса потока, например

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]