Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Дискретная математика для 1 курса.docx
Скачиваний:
276
Добавлен:
09.04.2015
Размер:
647.83 Кб
Скачать

2.4. Функции. Основные понятия и определения

В математическом анализе принято следующее определение функции.

Переменная y называется функцией от переменной x, если по некоторому правилу или закону каждому значению x соответствует одно определенное значение y = f(x). Область изменения переменной x называется областью определения функции, а область изменения переменной y – областью значений функции. Если одному значению x соответствует несколько (и даже бесконечно много значений y), то функция называется многозначной. Впрочем, в курсе анализа функций действительных переменных избегают многозначных функций и рассматривают однозначные функции.

Рассмотрим другое определение функции с точки зрения отношений.

Определение 2.16. Функцией называется любое бинарное отношение, которое не содержит двух пар с равными первыми компонентами и различными вторыми.

Такое свойство отношения называется однозначностью или функциональностью.

Пример 2.22.

а) {<1, 2>, <3, 4>, <4, 4>, <5, 6>} – функция.

б) {<x, y>: x, yR, y = x2} – функция.

в) {<1, 2>, <1, 4>, <4, 4>, <5, 6>} – отношение, но не функция.

Определение 2.17. Если f – функция, то Dfобласть определения, а Rfобласть значений функции f.

Пример 2.23.

Для примера 2.22 а) Df – {1, 3, 4, 5}; Rf – {2, 4, 6}.

Для примера 2.22 б) Df = Rf = (–, ).

Каждому элементу x Df функция ставит в соответствие единственный элемент y Rf. Это обозначается хорошо известной записью y = f(x). Элемент x называется аргументом функции или прообразом элемента y при функции f, а элемент y значением функции f на x или образом элемента x при f.

Итак, из всех отношений функции выделяются тем, что каждый элемент из области определения имеет единственный образ.

Определение 2.18. Если Df = X и Rf = Y, то говорят, что функция f определена на X и принимает свои значения на Y, а f называют отображением множества X на Y (XY).

Определение 2.19. Функции f и g равны, если их область определения – одно и то же множество D, и для любого xD справедливо равенство f(x) = g(x).

Это определение не противоречит определению равенства функций как равенства множеств (ведь мы определили функцию как отношение, т. е. множество): множества f и g равны, тогда и только тогда, когда они состоят из одних и тех же элементов.

Определение 2.20. Функция (отображение) f называется сюръективной или просто сюръекцией, если ля любого элемента y Y существует элемент x X, такой, что y = f(x).

Таким образом, каждая функция f является сюръективным отображением (сюръекцией) Df Rf.

Если f – сюръекция, а X и Y – конечные множества, то .

Определение 2.21. Функция (отображение) f называется инъективной или просто инъекцией или взаимно однозначной, если из f(a) = f(b) следует a = b.

Определение 2.22. Функция (отображение) f называется биективной или просто биекцией, если она одновременно инъективна и сюръективна.

Если f – биекция, а X и Y – конечные множества, то =.

Определение 2.23. Если область значений функции Df состоит из одного элемента, то f называется функцией-константой.

Пример 2.24.

а) f(x) = x2 есть отображение множества действительных чисел на множество неотрицательных действительных чисел. Т.к. f(–a) = f(a), и a  –a, то эта функция не является инъекцией.

б) Для каждого xR = (–,) функцияf(x) = 5 – функция-константа. Она отображает множество R на множество {5}. Эта функция сюръективна, но не инъективна.

в) f(x) = 2x + 1 является инъекцией и биекцией, т.к. из 2x1 +1 = 2x2 +1 следует x1 = x2.

Определение 2.24. Функция, реализующая отображение X1 X2 ... XnY называется n-местной функцией.

Пример 2.25.

а) Сложение, вычитание, умножение и деление являются двуместными функциями на множестве R действительных чисел, т. е. функциями типа R2 R.

б) f(x, y) = – двуместная функция, реализующая отображениеR  (R \ ) R. Эта функция не является инъекцией, т.к. f(1, 2) = f(2, 4).

в) Таблица выигрышей лотереи задает двуместную функцию, устанавливающую соответствие между парами из N2 (N – множество натуральных чисел) и множеством выигрышей.

Поскольку функции являются бинарными отношениями, то можно находить обратные функции и применять операцию композиции. Композиция любых двух функций есть функция, но не для каждой функции f отношение f–1 является функцией.

Пример 2.26.

а) f = {1, 2>, <2, 3>, <3, 4>, <4, 2>} – функция.

Отношение f–1 = {<2, 1>, <3, 2>, <4, 3>, <2, 4>} не является функцией.

б) g = {<1, a>, <2, b>, <3, c>, <4, D>} – функция.

g-1 = {<a, 1>, <b, 2>, <c, 3>, <D, 4>} тоже функция.

в) Найдем композицию функций f из примера а) и g-1 из примера б). Имеем g-1f = {<a, 2>, <b, 3>, <c, 4>, <d, 2>}.

fg-1 = .

Заметим, что (g-1f)(a) = f(g-1(a)) = f(1) = 2; (g-1f)(c) = f(g-1(c)) = f(3) = 4.

Элементарной функцией в математическом анализе называется всякая функция f, являющаяся композицией конечного числа арифметических функций, а также следующих функций:

1) Дробно-рациональные функции, т.е. функции вида

a0 + a1x + ... + anxn

b0 + b1x + ... + bmxm.

2) Степенная функция f(x) = xm, где m – любое постоянное действительное число.

3) Показательная функция f(x) = ex.

4) логарифмическая функция f(x) = logax, a >0, a 1.

5) Тригонометрические функции sin, cos, tg, ctg, sec, csc.

6) Гиперболические функции sh, ch, th, cth.

7) Обратные тригонометрические функции arcsin, arccos и т.д.

Например, функция log2(x3 +sincos3x) является элементарной, т.к. она есть композиция функций cosx, sinx, x3, x1 + x2, logx, x2.

Выражение, описывающее композицию функций, называется формулой.

Для многоместной функции справедлив следующий важный результат, полученный А. Н. Колмогоровым и В. И. Арнольдом в 1957 г. и являющийся решением 13-ой проблемы Гильберта:

Теорема. Всякая непрерывная функция n переменных представима в виде композиции непрерывных функций двух переменных.