Скачиваний:
5
Добавлен:
08.02.2024
Размер:
30.92 Mб
Скачать

7. Векторные диаграммы токов и напряжений в начале линии при изменении сопротивления в месте повреждения при разных видах кз. Влияние двустороннего питания. [л3 2.8; л9 15.8]

Атабеков

Характер изменения напряжения в электрической сети при КЗ зависит от параметров системы, вида повреждения, наличия сопротивления R в месте КЗ и т.д. Если в качестве первого приближения считать, что полные сопротивления источника ЭДС и остальной части электропередачи распределены равномерно и имеют одинаковый аргумент, то изменение напряжений от места повреждения до источника ЭДС при металлических ( трёхфазном, двухфазном и однофазном коротких замыканиях будет иметь характер, показанный на рисунке 1.

Рисунок 1. Изменение напряжений вдоль электропередачи при металлических КЗ.

По мере возрастания сопротивления R в месте повреждения векторные диаграммы напряжений и токов будут изменяться.

Рисунок 2. Круговые диаграммы токов и напряжений при симметричном трёхфазном КЗ (а – в месте повреждения, б – на некотором расстоянии от места повреждения)

На рисунке 2 (а) представлены круговые диаграммы токов и напряжений фазы А в месте повреждённой при симметричном трёхфазном КЗ через одинаковые для всех фаз сопротивление R, на рисунке 2 (б) то же, но на некотором расстоянии от места повреждения.

На рисунке 3 представлены круговые диаграммы токов и напряжений в случае двухфазного КЗ. Диаграммы наглядно показывают, как по мере возрастания сопротивления R в месте повреждения концы векторов токов и напряжений перемещаются по окружностям, изменяясь по величине и фазе.

Рисунок 3. Круговые диаграммы токов и напряжений в месте двухфазного КЗ (а – токи, б – напряжения)

Из диаграммы рисунка 3 (б), видно, что при наличии сопротивления R векторы линейных напряжений в месте КЗ образуют искаженный треугольник с вытянутой стороной и сокращённой стороной . При определённом сочетании параметров системы и величины R напряжение может превысить номинальное линейное напряжение, а напряжение по величине может быть близким к напряжению между повреждёнными фазами.

Направление вектора линейного напряжения в месте повреждения совпадает с направлением вектора тока (так как ), а его величина может изменяться в пределах от нуля до номинального значения в зависимости от сопротивления R.

Круговые диаграммы токов и напряжений нулевой последовательности в месте однофазного КЗ показаны на рисунке 4. Из этих диаграмм видно, что векторы тока и напряжения нулевой последовательности, оставаясь под неизменным углом , перемещаются по окружностям по мере увеличения сопротивления R. Конец вектора тока повреждённой фазы А, совпадающего по фазе с вектором тока нулевой последовательности, также скользит по окружности, которая имеет радиус, втрое больший, чем окружность для тока нулевой последовательности (ВД относятся к ответвлению КЗ).

Рисунок 4. Круговые диаграммы токов и напряжений в месте однофазного КЗ (а – составляющие нулевой последовательности, б – фазные напряжения).

На рисунке 4 (б) представлены круговые диаграммы напряжений всех трёх фаз в точке однофазного КЗ.

В том случае, когда сопротивления генераторов, сетей и нагрузок учитываются в виде реактивностей, построение круговых диаграмм соответственно упрощается. В частности, при двухфазном КЗ диаграммы токов и напряжений приобретают вид, показанный на рисунке 5, (а) и (б).

Рисунок 5. Круговые диаграммы токов и напряжений при двухфазном КЗ в индуктивной цепи (а – токи, б – напряжения)

Окружность напряжения фазы А на рис. 5 (б), имеющая в данном случае диаметр (здесь , – результирующие реактивные сопротивления всей системы, приведенные к точке КЗ), проходит через вершину вектора . Окружность напряжения фазы В в свою очередь имеет диаметром линию, соединяющую конец вектора с точкой .

Наконец, окружность напряжения фазы С имеет диаметром линию, соединяющую конец вектора с той же точкой .

Следует обратить внимание на то обстоятельство, что дня начального момента КЗ, когда и почти одинаковы по величине, получается , т.е. данная точка совпадает с серединой вектора . По мере протекания процесса КЗ отношение уменьшается и, следовательно, векторы напряжения неповреждённых фаз в месте КЗ укорачиваются, становясь по величине меньше .

Круговые диаграммы токов и напряжений могут быть также построены и для случаев трёхфазных КХ и двухфазных замыканий на землю через неодинаковые сопротивлений от нуля до бесконечности.

При исследовании работы электропередачи с учетом расхождения по фазе ЭДС источников сопротивление в месте повреждения может быть учтено в комплексной схеме замещения.

Ульянов

Характер эпюр напряжения отдельных последовательностей вдоль элементов рассматриваемой схемы представлен на рисунках 5 (а), (б), (в) для каждого несимметричного КЗ. По мере приближения к генератору напряжение прямой последовательности возрастает, а напряжение обратной и нулевой последовательностей, напротив, уменьшается (по абсолютной величине). При указанном соединении обмоток трансформатора напряжение нулевой последовательности за трансформатором отсутствует. Как видно из соотношения между и при однофазном КЗ, в данном случае . При другом соотношении между и соответственно изменятся эпюры напряжений и . Как видно, наибольшее искажение ВЖ напряжений всегда получается в месте КЗ. Для точек, расположенных ближе к источнику питания, это искажение становится все меньшим. Полностью симметричной сохраняется система векторов ЭДС.

Рисунок 5. Принципиальная схема (а) и эпюры относительных напряжений отдельных последовательностей при двухфазном (б), двухфазном на землю (в) и однофазном (г) коротких замыканиях.

Применительно к схеме на рисунке 5 (а), на рисунке 6 построены векторные диаграммы токов и напряжений в месте двухфазного КЗ через дугу с сопротивлением – в начале линии и за трансформатором, считая, что обмотки последнего соединены по схеме Y/D-11. Чтобы можно было сравнивать диаграммы на обеих сторонах трансформатора, принято, что токи и напряжения выражены в относительных единицах или приведены к одной ступени напряжения.

Нейтраль системы все время остаётся в центре тяжести треугольника линейных напряжений и её потенциал равен нулю. При изменении сопротивления дуги, как отмечалось выше, концы векторов напряжений и токов перемещаются по соответствующим полуокружностям.

Рисунок. 6. Векторные диаграммы токов и напряжений при двухфазном КЗ.

Аналогичные ВД токов и напряжений при однофазном КЗ приведены на рисунке 7. С удалением от места КЗ смещение нейтрали системы уменьшается. На рисунках 8 и 9 приведены ВД токов и напряжений при двухфазном КЗ на землю. Первые из них соответствует случаю, когда обе повреждённые фазы замкнуты на землю через общую дугу с сопротивлением , а вторые – случаю, когда каждая из повреждённых фаз замкнута на землю через отдельную дугу с сопротивлением .

Рисунок. 7. Векторные диаграммы токов и напряжений при однофазном КЗ.

Рисунок. 8. Векторные диаграммы токов и напряжений при КЗ двух фаз на землю через общую дугу.

Рисунок. 9. Векторные диаграммы токов и напряжений при КЗ двух фаз на землю через отдельные дуги.

8. Максимальная токовая защита. Основные положения реализации защиты. Выбор уставок в радиальной сети. Проверка чувствительности. Возможные причины снижения эффективности защиты. [Л2 5.1-2, 5.4-5.8;Л5 1.1,1.2,3.1]

Токовыми называются защиты с относительной селективностью, реагирующие на ток, проходящий по защищаемому элементу. Токовые защиты могут использоваться на любых элементах электроэнергетических систем (линиях, двигателях, трансформаторах и т. д.).

Защиты могут срабатывать при превышении током в месте их включения заранее установленного значения (максимальные защиты). В общем случае они выполняются со ступенчатыми, плавными (зависимыми) или комбинированными характеристиками выдержки времени , где l - расстояние от места включения защиты до точки возникновения КЗ. Для сетей с кВ защиты обычно имеют ступенчатые характеристики , для сетей более низких напряжений часто используются другие характеристики (комбинированные, когда часть участка характеристики независимая, часть зависимая – прим. М.Ч.), создаваемые специальным выполнением органа тока.

При кВ для ИО (измерительный орган) тока используются полные токи в двух фазах, так как в ТТ кВ часто используется схема неполной звезды или на разность токов 2 фаз (для обеспечения отключения при (двойного замыкания на землю) по возможности только одного места повреждения может применяться полная звезда – прим. М.Ч.). В сетях с кВ защиты преимущественно предназначаются для ликвидации только КЗ на землю ( ) и выполняются как защиты нулевой последовательности; для них требуются ТА в трёх фазах, которые включаются так, чтобы иметь ток в ИО . Используются иногда схемы с включением ИО на другие симметричные составляющие, а также с дополнительными ИО напряжения.

Типичными являются защиты со ступенчатыми характеристиками . Током срабатывания защиты или её отдельных ступеней Iс.з обычно называется минимальный ток в фазах линии, при котором защита (её ступень) может срабатывать. Логическое уравнение, характеризующее работу трёхступенчатых токовых ненаправленных защит, имеет вид:

,

Где – измерительный токовый орган, срабатывает при превышении током значения уставки; – орган выдержки времени, срабатывает если находится в сработанном положении в течение времени

Действие токовой защиты рассматривается в первую очередь на примере её применения для радиальной сети с односторонним питанием (рис. 8.1, а). Устройства защиты включаются только со стороны питания всех элементов и могут действовать на отключение своих выключателей. Примерные характеристики выдержек времени защит 1', 2' и 3' даны на рис. 8.1, б.

Рис. 8.1. Размещение токовых защит со ступенчатыми выдержками времени

в радиальной сети с односторонним питанием (а) и примерный

выбор их характеристик выдержек времени (б)

Оказывается целесообразным начинать с последних (третьих) ступеней, в частности потому, что они часто используются отдельно - в качестве самостоятельных защит. При включении на полные токи фаз они называются максимальными токовыми защитами.

Соседние файлы в папке Экзамен