Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

книги / Потенциальная теория неустановившихся сверхзвуковых течений

..pdf
Скачиваний:
1
Добавлен:
12.11.2023
Размер:
7.57 Mб
Скачать

34.C а b а h n е S Н. (1954). Influence des accelerations sur la courbure des ondes de choc. I. Ecoulements de revolution; It.

 

Ecoulements plans.

C. R. Acad. S ci., Paris, 238, 321— 3; 448— 9.

35.

C a m P b e I I

 

G.

A.

and F o s t e r

R. M. (1948). Fourier

 

Integrals for Practical Application. New York: D. Van Nost­

 

rand Co.

 

 

 

 

 

 

 

36.

C a г r i e r

G.

F.

(1949). The oscillating wedge in a supersonic

 

stream . J . Aero. Sci.

16, 150— 2.

 

37.

C h a n g C.

C.

(1948). The

transient

reaction of an airfoil due

 

to change

of

angle

of

attack

at supersonic speed. J . Aero. Sci.

15, 6 3 5 - 5 5 .

38.C h a n g C. C. (1951a). Transient aerodynamic behavior of an airfoil due to different arbitrary modes of non-stationary motions in a supersonic flow. N. A. C. A. Tech. Note, № 2333.

39.C h a n g C. C. (1951b). The aerodynamic behaviour of a har­

 

monically

oscillating finite

sweptback

wing

in supersonic

 

flow. N. A. C. A. Tech. Note, № 2467; see Math. Rev.

13,

703

 

(1952).

 

 

 

 

 

 

 

 

 

 

 

•40. C h e n g

H.

K.

(1954).

R em ark son n on -Ii

 

 

 

 

tex separation. J . Aero. Sci.

21,

212— 13.

 

 

 

41.

C h i n n e c k

A. ,

H o l d e r

D.

VV.

and B e r r y

C.

J .

 

(1955). Observations of the flow around a two-dimensional

 

aerofoil oscillating in a high speed airstream .

Rep.

Memor.

 

Aero.

Res.

Coun.,

London,

№ 2931.

 

 

 

 

42.

C o l e

J .

D.

(1953).

Note

on

non-stationary

slendcr-body

'theory, J . Aero. Sci, 20, 798.

43.

C O I e

J . D. (1955).

Acceleration

of

slender bodies of revolu­

 

tion through sonic velocity. J .

Appl.

Phys. 26, 322 — 7.

 

 

 

44. C o l l a r

 

A.

R.

(1943). Theoretical

forces and moments

on

 

a thin aero foil with hinged flap at supersonic speeds. Rep.

 

Memor. Aero. Res. Coun., Lond.,

№ 2004.

 

 

 

 

 

 

45.

C O p S O n

E .

T.

(1950).

Diffraction

by

a

plane

screen.

Proc.

 

Roy.

Soc.

 

A 202,

277— 84.

 

 

 

 

 

 

 

 

 

 

 

46.

C O U r a n

t

R .

and

F r i e d r i c h s

 

K.

O.

(1948).

 

Super­

 

sonic

Flow

and

Shock W aves.

New

York:

Interscience

Publ.

47. C O U r

a n t

 

R .

 

and

H

i I b e г t

D.

(1937).

Methoden

der

 

M athem atischen

Physik.

Berlin: Springer

Verlag.

 

 

 

 

48. C U n n i n g h a m

H.

J .

(1955).

Tolal

lift and

pitching mo­

 

m ent on thin arrowhead wings oscillating in supersonic potential

 

flow. N. A. C. A. Tech. N ote,

№ 3433.

 

 

 

 

 

 

 

49.

D o r r

J .

(1949). Les forces aerodynamiques zur une aile vidrant

 

harmoniquement dans un ecoulement supersonique. 0 . N. E. R. A.

 

Rap.

№ 3 7 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50.

D r a k e

D.

 

G.

 

(1956).

The

motion

of

an

oscillating

aerofoil

51.

in a compressible

free jet. J .

R . Aero.

Soc. 60, 621— 2.

aerofoil

D r a k e

D.

 

G.

(1957). The oscillating

two-dimensional

 

between

porous

walls. Aeronaut. Q uart.

8,

226— 39.

 

 

 

 

52.

D г i s c h I e r

‘ J .

A.

(1956).

Calculation

and compilation

of

 

the unsteady lift functions for a rigid wing subjected

to sinusoi­

 

dal gusts and to sinusoidal sinking oscillations.

N.

A.

C.

A.

 

Tech.

N ote,

№ 3748.

 

 

 

 

 

 

 

 

 

 

 

 

 

53.E i c h e l b r e n n e r Е . А. (1954). Thcorie des corps elanccs.

О.N. Е. R. А. Rap. № 68.

54. E i s e n h a r t L.

Р.

(1934). Separable systems

in Euclidean

3-space, Phys.

Rev.

45, 427— 8; Ann, M ath.,

Princeton,

35,

284.

 

 

 

55.E i S I C у J . G. (1955). The Flutter of Simply Supported Rec­ tangular Plates in a Supersonic Flow. Pasadena: Cal, Inst. Technol., Guggenheim Aero. Lab.

56.E r d e l v i A. (1945). Solution of Integral Equations Occurring

in an Aerodynamical Problem, S R E/ACS 89, B rit. A dm iralty, Dep. Sci. Res. Exp.

57.E v v a r d J . C. (1948). A linearized solution for time-depen­ dent velocity potentials near three-dimensional wings at super­ sonic speeds. N. A. C. A. Tech. Note, № 1699.

58.E v v a r d J . C. (1949). Use of source distribution for evalu­ ating theoretical aerodynamics of thin finite wings at super­

 

 

sonic speeds. N. A.

C. A. Rep.

№ 951.

 

 

 

 

 

 

 

 

59.

F

l a x

 

A.

 

(1959).

Relations

between

the

characteristics

of

 

 

a wing and its reverse

 

in

supersonic

flow.

J .

Aero.

Sci.

16,

 

 

496— 504,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60.

F

I a X

A.

 

(1952a).

The

reverse flow theorem

 

for

nonstationary

 

 

flows.

J . Aero. Sci. 19,

352— 3.

 

 

 

 

 

 

 

 

 

61.

F l a x

 

A.

 

(1952b). General reverse flow and variational theo-

 

 

remx

in lifting-surface theory. J . Aero, Sci.

19,

361— 74.

 

62.

F

I a

 

A,

 

(1953). Reverse flow and veriational theorems for

 

 

lifting

surfaces in nonstationary compressible flow.

J ,

Aero.

 

 

Sci.

20,

120— 6.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

63.

F o x

E.

N.

(1948). The

diffraction

of

sound

 

pulses by an

infi­

 

 

nitely

long strip. Phil. Trans. A 241,

71 — 103.

 

 

 

 

64.

F

r a e n к e I

 

L.

E.

(1953),

On the

operational form

of

the

 

 

linearized

 

equation

 

of

 

supersonic

flow.

J .

Aero.

Sci.

20,

 

 

6 4 7 - 8 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

65. F r a e n k e l

 

L.

E.

 

(1955). On the unsteady

motion

of

a slen­

 

 

der

body

 

through

a

compressible

fluid.

Aeronaut.

Q uart. 6,

 

 

5 9 - 8 0 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

66.

Ф P a H K Л ь

Ф.

(1946).

Влияние ускорения

точных тел

вра­

 

 

щения

на

 

их сопротивление в газе. ПММ 10, стр.

521— 524.

67.

F

г о е 1 i C h

 

J .

Е.

(1951). Nonstationary

 

motion

of

purely

 

 

supersonic wings. J .

Aero. Sci. 18,

298— 310.

 

 

 

 

 

68.

F u n

g

Y .

 

C.

(1955a),

An

Introduction to

the Theory of Aeroe-

 

 

lasticity. New

York: John

W iley and Sons,

Inc. (Имеется

рус­

 

 

ский

перевод: Ф ы н

Я.

Ц .,

Введение

в теорию

аэроупру-

 

 

гостп, Фнзматгиз, Москва, 1959. — Прим, персе.)

 

 

 

69.

F

U п g

Y .

С.

(1955Ь).

The

Flutter

of

а

Buckled

Plate

in a

 

 

Supersonic

 

Flow.

Pasadena:

Cal.

Inst.

Techn., Guggenheim

 

 

Aero,

Lab.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70.

G a l i n

L.

 

(1947). A wing rectangular in plan in a supersonic

 

 

flow.

Akad.

Nauk

SSSR , Prikl, Math. Mech. 11, 4 65 — 74.

71.G a r d n e r C. S. (1950a). Time-dependent linearized super­ sonic flow past planar wings. Comm. Pure Appl. Math, 3,

72.

G а г d n е г

С,

S.

 

(1950Ь). А relation between time-dependent

 

 

and steady linearized supersonic flows past conical bodies.

 

 

Comm.

Pure

Appl. Math,

3,

39— 43.

 

 

 

 

 

 

 

 

73.

G

a r d n e r

C. S. and

L u d l o f f

H. F,

(1949). Lift and drag of

 

 

rectangular

wings

of

finite

aspect

ratio

in

accelerated, tran­

 

 

sonic

flight,

J ,

Aero. Sci,

16,

635— G.

 

F.

 

 

 

 

 

 

74.

G

a r d n e г

C.

S.

and

L u d l o f f

И,

 

(1950). Influence

 

 

of

acceleration

on

aerodynamic characteristics of thin airfoils

 

 

in

supersonic

and

 

transonic

flight. J . Aero. Sci.

 

17, 47 — 59,

75.

G a r г i C к

 

I. E. (1957).

 

Nonsteady

wing

 

characteristics.

 

 

Aerodynamics

of

A ircraft

Components

at

High

 

Speeds, Sect.

 

 

F ,

Princeton University Press.

 

 

 

 

 

 

 

 

 

 

 

76.

G a r г i C к

 

I.

E .

and

R u b i n

о w

S.

I.

 

(1946).

Flutter

 

 

and oscillating airforce calculations for an airfoil in two-dimen­

 

 

sional supersonic flow. N. A. C. A. Rep. № 846.

 

 

 

77.

G a r г i C к

I.

E .

and

R

u b i n о w

S.

I.

 

(1947).•Theoreti­

 

 

cal

study

of

air

forces on an

oscillating

or steady

thin

win

in

 

 

a supersonic

main

stream . N. A. C. A. Rep. № 872.

 

 

78.

G e r m a i n

P.

(1949). La

theorie

dcs

mouvements homogenes

 

 

et son application au calcul de certaines ailes delta en regime

 

 

supersonique.

Rech.

Aero.

? ,

3 — 16.

 

 

 

 

 

 

 

 

79.

G e r m a i n

P .

and

B a d e r

 

R.

 

(1949). Quclques remarques

 

 

sur Ies mouvements vibratoires d’une aile en

regime supersoni­

 

 

que.

Rech.

Aero.

 

11, 3— 13.

 

 

 

 

 

 

 

 

 

 

 

 

80.

G O I d s t e i n

 

S.

 

and

W

a rd

G.

N.

(1950).

The linearized

 

 

theory

of

conical

 

fields in supersonic flow, with applications

 

 

to

plane aerofoils.

Aeronaut. Quart. 2,

39 —84.

 

 

 

 

 

81.

G O O d m a n

 

T.

 

R.

(1951).

 

Aerodynamics

of

a supersonic

 

 

rectangular wing

stri

ing a sharp-edged

gust. J .

Aero. Sci.

18,

 

 

519— 26.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82.

G O O d m a n

 

T.

 

R.

(1952). The

quarter-infinite

wing oscilla­

 

 

ting at

supersonic

speeds. Q uart.

Appl. Math.

10, 189— 92.

•83.

G u n n

 

J .

C.

 

(1947).

Linearized

supersonic

aerofoil

theory.

 

 

Parts

I

and

II. Phil. Trans, A, 240,

327— 73.

 

 

 

 

84.

H a d a m a r d

J .

(1923). Lectures on Cauchy’s Problem i

 

 

Linear

Partial

Differential

Equations.

New

Haven: Yale

U ni­

 

 

versity

Press

(также

New

York: Dover Publications, 1952).

85.

H a r m O n

 

S.

 

M.

(1949). Theoretical relations between the

 

 

stab ility

derivatives

of

 

a

 

wing

in

direct

and

reverse

 

 

flow. N. A. C. A. Tech. Note, № 1943.

 

 

 

 

 

 

 

 

86.

X

a c K и H Д

M.

Д .

и

Ф a л ь к о п и ч С.

В.

 

(1947). Коле­

 

 

бания крыла конечного размаха в сверхзвуковом потоке.

 

 

ПММ

11,

стр.

371— 376.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

87.

H

а S S I g

J .

 

(1954). Aerodynamic flutter coefficients for an

 

 

airfoil

with

leading-and trailing-edge flaps in two-dimensional

 

 

supersonic flow. J . Aero.

Sci.

21,

131— 2,

 

 

 

 

 

 

88.

H a у e s

W .

 

D.

(1947a),

Linearized Supersonic Flow. Ph. D.

 

Thesis,

California

 

Inst, of Technology, Pasadena; также Rep.

 

 

N. Amer. Aviation

In c,,

№ AL -222.

 

 

 

 

 

 

 

 

 

89.

H

a у e S

W .

 

D. . (1947b).

 

On

hypersonic sim ilitude.

Quart.

 

Appl.

Math.

5,

1 0 5 - 6 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90.

H a y e s W. D.

(1948). Reversed flow

theorems in supersonic

 

aerodynamics. Proc. V lIlh

lnt. Congr. Appl. Mech. (London) 2;

 

Rep. N. Amer. Aviation

Inc. № A L-755.

 

 

 

 

 

H a y e s

W.

D .,

R

о b e r

t s R. C.

and H a a s e r N. (1952).

 

Generalized linearized conical flow. N. A. C. A. Tech.

Note,

 

No 2667.

 

 

 

 

 

 

 

 

 

 

 

 

92.

H e a s l e t

M.

A.

and

L о m a x H.

(1949). Two-dimensional

 

unsteady lift problems in supersonic flight.

N. A. C. A. Rep.

 

No 945.

 

 

 

 

 

 

 

 

 

 

 

 

93.

H e a s I e t

M.

 

A.

and

L o m a x

H.

(1954a).

Supersonic

 

and transonic small perturbation theory; see Sears (1954), Div.

 

D. стр.

275— 314.

 

 

 

 

 

 

 

 

 

94.

H e a s I c t

M.

A.

and

L о m a x H.

(1954b). Further remarks

 

concerning integral transforms of the

wave

equation. J .

Aero.

 

Sci.

21,

142.

 

 

 

 

 

 

 

 

 

 

95.

H e a s I e t

M.

 

A.

and

S p r e i t e r

J .

R. (1953).

Recip­

 

rocity relations

in aerodynamica. N. A. C. A. Rep. № 1119.

96.

H e d g e P e t h J . M ., B u d i a n s k y

B.

and L e o n a r d

R .W .

 

(1954).

Analysis

of flutter

in compressible

flow of

a panel on

 

many supports. J .

Aero. Sci. 21, 47 5 — 86.

 

 

 

97.

von

H e l m h o l t z

H,

(1886). Ueber

die physikalische

Bedeu-

 

tung des Princips dcs Kleinsten Wirkung. Crelle (J. reine angew.

 

M ath.)

100,

1 3 7 - 6 6 ,

2 1 3 - 2 2 .

 

 

 

 

 

98.H i p s c h И. M. (1951). Harmonic Oscillations of a Narrow Delta Wing in Supersonic Flow. Ph. D. Thesis, Pasadena: C ali­ fornia Inst, of Technology.

99.H j e l t e F, (1956). Methods for calculating pressure distri­

butions

on oscillating

wings

of

delta type

at supersonic

and transonic speeds.

K.

Tekn.

Hogsk.

Handl. Aero.

TN , №

39.

 

 

 

 

100.H O n I H. (1949). Two-dimensional wing theory in the super­ sonic range. Transl. in N. A. C. A. Tech. Memo. Ns 1238.

101.H o w a r t h L. (editor) (1953). Modern Developments in Fluid Dynamics: High Speed Flow. Oxford, Clarendon Press. (Имеется русский перевод: Хоуарт Л ., Современное состояние аэроди­ намики больших скоростей. Изд. нн. лит., Москва, 1955.—

Прим, перев.)

102.

H u c k e l

V.

(1956).

Tabulation

of

the

functions which

 

occur in the aerodynamic theory of oscillating wings in super­

 

sonic flow. N. A. C. A .,

Tech. Note, Ns 3606.

 

103.

H u c k e l

V.

and D u r l i n g

B .

J .

(1950). Tables of wing-

 

aileron coefficients of oscillating air forces in two-dimensional

 

supersonic flow. N. A. C. A. Tech. N ote, Nb 2055.

104.

H u n n

B.

A.

(1955).

On the

determ ination of the flutter

 

forces on wings with supersonic leading edges. Q uart. J . Mech. 8 ,

 

293— 309;

CM.

также Math. Rev.

17,

314 (1955).

105.J o n e s R. T. (1946). Properties of low aspect ratio pointed wings at speeds below and above the speed of sound. N. A. C. A. Rep. № 835.

106. J o n e s R .

T.

(1951). The minimum drag of thin wings i

fric-tionless

flow.

J . Aero. Sci. 18, 7 5 — 81.

107.J o n e s W . P. (1947). The influence of thichncss-cliord ratio on supersonic derivatives for oscillating aerofoils. Aero. Res. Coun., Lond. Rep. № 10, 871.

108.J o n e s W . P. (1948). Supersonic theory for oscillating wings

of

any

planform.

Rep.

Memor.

Aero.

Res.

Coun.,

Lond.,

№ 2655.

 

 

 

 

 

 

 

 

 

 

 

 

109. J o n e s

W. P.

and

S k a n

S.

W .

(1950). Aerodynamic

forces on biconvex

aerofoils oscillating in a supersonic iair stream

and calculation of forces for aerofoil with flap. Aero. Res. Coun.,

Lond.

Rep. № 13, 162 and 14, 217; Rep. Memor. Aero. Res.

Coun.,

Lond. № 2749

(1953).

 

 

 

 

 

 

 

HO. von

K a r m a n

Th. (1947). Supersonic aerodynat

ics-princip-

Ies and applications. J .

Aero. Sci.

14,

373— 409.

 

 

K a r P

J .

N .. S h U

S.

S .,

W e i I

H,

and

B

i о t

M. A.

(1947)

.

Aerodynamics

of the oscillating airfoil in compressible

flow.

U.

S. Army Air

Force

Air

Materiel

Command Rep.

F -T R -1 167-ND.

112.

K a r p

J.

N. . S h u

 

S.

S. .

W e i l

H.

and B i o t

M.

A.

 

(1948)

. T heoscillating

airfoil in compressible flow. 11. A review

 

of graphical and numerical data. U. S. Army Air Force Air

 

Meteriel Command Rep.

F -T R -1 195-ND.

 

 

 

 

113. K o n d o

Jiro (1954). The transient

potential of an unsteady

 

supersonic

flow.

Proc.

IVth

Japan

N at.

Congr. Appl.

Mcch,

 

стр.

283 — 7.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

114.

K P a C и Л ь Щ и K 0 D a

E.

A.

(1947).

Возмущенное движе­

 

ние воздуха

при

вибрациях

крыла,

движущегося

со

сверх­

 

звуковой

скоростью. ПММ, П , стр. 147— 164, см. также ДАН

 

СССР 56,

стр. 571-^574.

 

 

 

 

 

 

 

 

 

.115, К P а C и л ь щ H к о в а

Е .

 

А.

(1950). К теории

нестацио­

 

нарного движения сжимаемой жидкости. ДАН

СССР

72,

 

стр.

23 — 26.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

116.

К P а C и л ь щ и к о в а

Е.

А.

(1954а).

Неустановившееся

 

движение крыла бесконечного размаха. ДАН 94,

стр.

397,

 

см. также

Изв. АН

СССР, O TH , вып. 2,

1954, стр.

25— 41.

117.

К р а с н л ь щ и к о в а

Е. А. (19546). Неустановившееся

 

движение

крыла

бесконечного

удлинения.

Ученые записки

 

М ГУ

 

172,

Мех.

5.

стр.

6 1 - 7 8 .

 

 

 

 

 

 

 

118.

K i i s s n e r

Н.

G.

 

(1940).

AlIgem eineTragflachentheorie,

 

Luftfahrtforsch,

17,

3 7 0 - 8 .

 

 

 

 

 

 

 

 

 

119.

L а g е г S t г о m

Р.

 

А.

(1947). Low aspect ratio rectangular

 

wings

 

in

supersonic

flow.

Rep,

Douglas

A ircraft

Co. №

SM -13110.

120.L a g e r s t r o m P. A. (1948). Linearized supersonic theory of conical wings. N. A. C. A. Tech. Note, № 1685.

121.L a m b H. (1888). On reciprocal theorems in dynamics. Proc.

 

Lond.

M ath.

Soc.

19,

144— 51.

122.

L a m b

H.

(1906).

On Sommerfeld’s diffraction problem;

 

and

on reflection

by

a parabolic mirror. Proc. Lond. Math.

 

Soc.

(2), 4 ,

190— 203.

123.

L a m b

H,

(1910). On the diffraction of a solitary wave. Proc,

 

Lond.

M ath,

Soc.

(2)

8, 4 2 2 - 3 7 ,

124.L a m b Н. (1932). Hydrodynamics. Cambridge University Press. (Имеется русский перевод; Л a м б Г ., Гидродинамика, Гостехнздат, Москва, 1947. — Прим, перев.)

125. L а п C

е G. N. (1952). Some Problems of Supersonic Flight,

Pb. D.

Thesis, University of London.

126.L a n C e G. N. (1954). The delta wing in a non-uniform super­ sonic stream . Aeronaut. Quart. 5 , 55 — 72.

127.

L a n C e G.

N.

(1955). The lift of twisted and cambered wings

 

in supersonic

flow. Aeronaut. Q uart, 6, 149— 63.

128.

L a n d a h l

M.

(1954). The flow around oscillating low aspect

 

ratio wings at

transonic speeds. K. Tekh. Hogsk. H andl., Aero.

 

TN , № 40.

 

 

129.L a n d a h l M. (1956). Forces and Moments on O scillating Slender W ing-Body Combinations at Sonic Speed, M. I. T. Fluid

 

Dynamics

Research Group,

Cambridge,

M ass., Rep. № 56 -1 .

130.

L a n d a h l

M.

(1957). Unsteady flow

around

thin wings

 

at high Mach numbers. J . Aero. Sci. 24, 33—8.

 

 

131.

L a n d a h I

M .,

A s h l e y

H.

and M o l l

o-C h r i s t en -

 

S e n

E.

(1955). On approxim ate solutions for

the compressible

 

flow

around

oscillating

thin

wings.

J .

Aero.

Sci. 22,

581— 2.

132.L a n e F. (1957). Supersonic flow part an oscillating cascade with supersonic leading-edge locus. J . Aero. Sci. 24 , 65— 6.

133.L e s l i e D. C. M. (1957), An introduction to second-order wing theory. J . Aero. Sci. 24, 99— 106.

134.L e v i n e H. (1950). Variational principles in acoustic dif­

 

fraction

theory.

J .

Acoust. Soc. Amer.

22, 48 — 55.

 

 

135.

L e v i n e

H.

and S c h w i n g e r

J .

(1948— 1949a). On the

 

theory of diffraction by an aperture in an infinite plane screen.

 

Phys. Rev. 74,

958— 74; P art

II

75,

1423— 32.

 

 

 

136.

L e v i n e

H.

and

S c h w i n g e r

J .

(1949b). On the trans­

 

mission coefficient of a circular aperture. Phys. Rev. 75, 1608— 9.

137.

L i T .

 

Y .

(1951). Periodic rolling oscillations of

a rectangular

 

wing

in

supersonic

flight. J . Aero. Sci.

18, 191— 8.

 

 

138.

L i

T.

(1956). Aerodynamic

influence coefficients

for

an

oscil­

 

lating

thin

wing in

supersonic flow. J .

Aero. Sci.

23,

613 — 22.

139.

L i g h t h i l l

M.

J .

(1945).

Supersonic flow

past

bodies

 

of

revolution.

Rep.

Memor. Aero. Res. Coun., Lond. № 2003.

140.

L i g h t h i l l

M.

J .

(1949). A

technique for rendering

appro­

 

xim ate

solutions to

physical

problems

Uniformly

valid.

Phil.

 

Mag.

(7),

40,

1179— 1201.

 

 

 

 

 

 

 

141.

L i g h t h i l l

M.

J . (1951). A new approach to thin airfoil

 

theory.

Aeronaut.

Quart. 3,

193— 210.

 

 

 

 

142.L i g h t h i l l M. J . (1953). Oscillating airfoils at high Mach number. J . Aero. Sci. 20, 402— 6.

143.

L i n

C.

C .,

R e i s s n e r

E.

and

T s i e n

H. S.

(1948).

 

On two-dimensional non-steady

motion

of a

slender

body in

 

a compressible fluid. J . Math. Phys. 27,

220— 31.

 

144.

L o m a x

H. (1954).

Lift

developed

on unrestrained

rectan ­

 

gular

wings

entering

gusts

at subsonic

and supersonic

speeds.

 

N. A.

C. A.

Rep. № 1162.

 

 

 

 

 

 

145.* L o m a x

 

H. ,

F u l l e r

F.

В. and

S I u d e г

L.

(1955).

 

Generalized

 

indicial forces

on

deforming

rectangular

wings

 

in supersonic flight. N. A. C. A. Rep. № 1230.

 

 

 

146.

L o m a x

 

H. ,

H e a s l e t

M. ,

F u l l e r

F.

and

S l u ­

 

d e r

L.

(1952). Twoand three-dimensional

unsteady lift prob­

 

lems in high-speed flight. N. A. C. A. Rep. № 1077.

 

 

147.

L o n g h o r n

A. L. (1952).

The

unsteady,

subsonic motion

 

of a sphere

in

a compressible

inviscid

fluid.

Q uart. J .

Mech.

 

Appl.

M ath.

5 ,

64 — 81.

 

 

 

 

 

 

 

 

 

148.

L u k e

Y .

 

L .

(1956).

On

the evaluation

of generalized aero­

 

dynam ic

forces

for

triangular

wings

with

supersonic leading

 

edges.

W right Air

Development Center R ep .,

№ 56-525.

 

149.

L U к e

Y .

L .,

C o o m b s

G.

V.

and W

a g n e r

F.

(1957).

 

Solution

of

the potential

equation

for

the unsteady

flow

about

 

a triangular wing,

etc. W rig h tA ir

Development Centre

R ep.,

 

№ 57-258

 

 

 

 

 

 

 

 

 

 

 

 

 

150.

M a g n u s

 

W.

and O b e r h e t t i n g e r

F . (1949). Form u­

 

las Theorems for the Special Functions of

M athem atical

Phy­

 

sics.

New

York; Chelsea

Publ.

Co.

 

 

 

 

 

 

151.M a n g i e r K. W. (1951a). Improper integrals in aerodyna­ mics. R. A. E. Rep. Aero, № 2424.

152.M a n g i e r K. W. (1951b). Calculation of the pressure dis­

tribution over a wing at sonic speeds. R . A. E . Rep. Aero.

№ 2439; Rep. Memor. Aero. Coun., Lond., № 2888.

153.M a n g i e r K. W. (1952). A method of calculating the shortperiod longitudinal stability derivatives of a wing in linearized unsteady compressible flow. Rep. Memor. Aero. Res. Coun., Lond., № 2924.

154.M a r t i n J . C. and G e r b e r N. (1954). The effect of thick­ ness on pitching airfoils at supersonic speeds. J . Math. Phys. 33, 46 — 56.

155.

M a r t i n

J.

C.

and G e r b e r N.

(1955).

The effect of

 

thickness on airfoils with constant vertical acceleration at super­

 

sonic speeds. J .

Aero. Sci.

22, 179— 88.

 

 

156.

M a z e l s k y

B .

(1956).

Theoretical properties

of vanishing

 

aspect ratio

harm onically oscillating rigid

airfoils

in a compres­

 

sible medium. J .

Aero. Sci. 23, 639—52.

 

 

157.M c L a c h l a n N. (1951). Theory and Application of Mathieu Functions. Oxford: Clarendon Press.

158.M e i x n e r J . "W. (1949). Die Kantenbedingung in der Theorie der Beugung electromagnetischer Wellen an volkommen

Ieitenden

ebenen Schirmen. Ann.

Ph ys.,

Lpz. (6)

6 , 2 — 9.

159. M e r b t

H.

and

L a n d a h l

M.

(1953).

Aerodynamic

forces on oscillating low aspect

ratio

wings in

compressible

flow. K . Tekn. Hogsk. H andl., Stockholm , Aero,

TN , № 30 .

160. M e r b t

H.

and

L a n d a h l

M.

(1954). The oscillating

wing of low aspect ratio-results and tables of auxiliary func­

tions.

K.

Tekn.

Hogsk. H andl.,

Stockholm , Aero. T N , №3 1 .

M i g O f s

к у

E .

(1955). Some

considerations on two-dimen­

sional thin airfoils deforming in

supersonic flow.

N. A. C. A.

Tech

N ote, № 3386.

 

 

 

 

M i I e s

J .

W.

(1947). The aerodynamic forces on

an

oscilla­

 

ting airfoil

at

supersonic speeds. J . Aero. Sci.

14,

351—8.

163.

M i l e s

J .

W.

(1948a).

Acoustical methods

in

supersonic

 

aerodynamics. J .

Acoust. Soc. Amer. 20,

314— 23.

 

 

164.

M i l e s

J .

W.

(1948b). Harmonic and transient

motion of

 

a swept

wing

in

supersonic speeds. J . Aero. Sci.

15,

343— 7.

165.

M i l e s

J .

M.

(1948c). The aerodynamic forces on an oscillating

 

flap at

supersonic speeds.

J . Aero. Sci.

15, 565 —8;

16, 442;

17. 124.

166.M i l e s J . M. (1948d). Transient loading of airfoils at super­ sonic speeds. J . Aero. Sci. 15, 592— 8.

167. M i l e s

J .

W.

(1949a). Transform and variational methods

 

in supersonic

aerodynamics. J . Aero. Sci. 16, 252— 3.

 

168.

M i l e s

J .

W .

(1949b), On harmonic motion at supersonic

 

speeds. J .

Aero.

Sci.

16, 378.

 

 

 

 

 

M i l e s

J .

 

M.

(1949c). On the oscillating rectangular airfoil

 

at supersonic

speeds. J . Aero. Sci.

16, 381.

 

 

 

M i l e s

J .

 

W .

(1949d). Quasi-stationary thin airfoil theory.

 

J .

Aero.

Sci.

16,

440.

 

 

 

 

 

 

 

M i l e s

J .

W.

 

(1949e), Quasi-stationary airfoil theory i

 

compressible

flow,

J .

Aero.

Sci.

16, 509.

 

 

172.

M i l e s

J .

W.

(1949f). On the oscillating aileron at super­

 

sonic speeds. J . Aero. Sci. 16, 511.

 

 

 

173.

M i I e S

J .

 

W.

(1949g). On nonsteady motion of delta wings.

 

J .

Aero.

Sci.

16,

568.

 

 

 

 

 

174.

M i l e s

J .

 

W.

(1949h). On damping in pitch for delta wings.

 

J .

Aero.

Sci.

16,

674.

 

 

 

 

 

 

175. M i l e s

J .

W,

 

(1949i).

The

oscillating rectangular airfoil

 

at

supersonic speeds.

U. S.

Naval

Ordnance

Report,

Ns 1170,

 

lnyokern,

California.

 

 

 

 

 

 

 

M i l e s

J .

W.

(1949j). The indicial adm ittance of a supersonic

 

rectangular

airfoil.

U, S.

Naval

Ordnance

Report,

1171,

 

lnyokern,

California,

 

 

 

 

 

 

 

M i I e S

J ,

W.

(1949k). The oscillating rectangular control

 

surface

at supersonic speeds. U. S. Naval Ordnance Report,

 

№ 1185,

lnyokern,

California.

 

 

 

 

 

M i I e S

J .

W.

(19491). On the diffraction of an electromagne­

 

tic

wave through

a plane screen. J . Appl. Phys. 20,

760 — 71;

 

21,

468;

Phys.

Rev.

75, 695— 6.

 

 

 

179.M i l e s J . W . (1950a). On the reduction of unsteady super­ sonic flow problems to steady flow problems. J . Aero, Sci. 17, 64.

180.M i I e s J . W. (1950b). On certain integral equations in dif­

181.

fraction

theory,

J .

Math.

Phys. 28, 223 — 6.

M i I e s

J .

W.

(1950c). On simple planforms in supersonic

 

flow. J . Aero. Sci. 17, 127.

182, M i l e s

J .

W.

(1950d). On the compressibility correction for

183.

subsonic unsteady flow. J .

Aero. Sci. 17, 181.

M i l e s

J .

W .

(1950e). Transient loading of supersonic rectan ­

184,

gular airfoils. J .

Aero. Sci. 17, 647— 52.

M i I e S

J .

W .

(1950f).

On virtual mass and wave drag at

 

subsonic

speeds.

J .

Aero.

Sci. 17, 667.

185.

M i l e s

J .

W.

(1950g). On non-steady motion of slender

 

bodies. Aeronaut. Q uart.

2, 183— 94.

 

 

 

 

 

 

186.

M i l e s

J .

W .

(1950h). Unsteady supersonic flow past slender

 

pointed bodies. Proceedings of Bureau of Ordnance Symposium,

 

U . S. N aval

O rdnanceR eport, № 1651,

стр.

4 2 9 — 84;

№ 2031

 

(1953).

 

 

 

 

 

 

 

 

 

 

187.

M i I e S

J .

W .

(19501). Dynam ic cliordwise stability

at super

 

sonic speeds.

Rep. N. Amer. A viation Inc. № A L -1140.

 

188.

M i I e s

J .

W .

(1950j).

Transient loading of wide delta air

 

foils at supersonic speeds. U. S. Naval Ordnance Report, № 1235

 

lnyokern, California.

 

 

 

 

 

 

 

189.

M i l e s

J .

W.

(1951a).

The oscillating

rectangular

airfoil

 

at

supersonic speeds. Q uart. Appl. M ath.

9,

4 7 — 65.

 

 

190.

M i l e s

J .

W .

(1951b). Transient loading of wide delta air

 

foils

at supersonic speeds. J . Aero. Sci.

18, 543— 54.

 

 

191.

M i l e s

J .

W .

(1951c).

On slender

wing

theory.

J .

Aero

 

Sci.

18,

770.

 

 

 

 

 

 

 

 

192.

M i l e s

J .

W .

(1951d), On virtual mass and transient motion

 

in

subsonic

compressible

flow. Q uart.

J .

Mech.

Appl. Math

 

4 ,

388— 400.

 

 

 

 

 

 

 

 

 

 

M i I e S

J .

W,

(1951e). Aerodynam ic derivatives for an oscil

 

Iating rectangular airfoil

at supersonic

speeds.

U.

S.

Nava

 

Ordnance

Report, Ns 1292,

lnyokern, California.

 

 

 

194. M i l e s

J .

W.

(1952a). On slender wing-body

theory. J . Aero

 

Sci.

 

19,

140.

 

 

 

 

 

 

 

 

J 95.

M i l e s

J .

W . (1952b). A note on supersonic wing integral

 

equations in

unsteady flow. Aeronaut. Q uart.

3 ,

294 — 6.

196.Miles J . W . (1952c). On nonsteady supersonic flow about pointed bodies of revolution. J . Aero. Sci. 19, 208.

197.M i l e s J . W . (1952d). Slender body theory for supersonic

unsteady how. J . Aero. Sci. 19, 280.

198.M i I e S J . W . (1952e). On interference factors for finned bo­ dies. J . Aero. Sci. 19. 287.

199.

M i l e s

J .

W .

(1952f). On the general solution for unsteady

 

m otion of a

rectangular wing in

supersonic flow. J . Aero. Sci.

200.

19, 421.

 

 

 

 

 

 

 

 

 

 

 

M i I e S

J .

W.

(1952g). A note on the damping

in roll

of

201.

a cruciform

winged body. Q uart. Appl. Math.

10,

276— 7.

 

 

M i l e s

J .

W .

(1952h). On acoustic

diffraction

through

an

 

aperture

in

a plane screen. Acustica 2,

287 — 91.

 

 

 

 

202. M i I e s

J .

W .

(1953a)----------- . On' '

linearized---------- "

theory- . J .

Aero.

Sci.

 

20, 64,

 

 

 

 

 

 

 

 

 

 

 

203. M i l e s

J .

W .

(1953b). A general solution for the rectangular

 

airfoil in

supersonic flow. Q uart

Appl. M ath.

11,

1— 8.

 

 

204.

M i l e s

J .

W .

(1953c).

Impulsive motion

of

a

flat plate.

 

Q uart. J .

Mech.

Appl. Math. 6 ,

129— 40.

 

 

 

 

 

205.

M i l e s

J .

W .

(1953d). On the low aspect ratio

oscillating

 

rectangular

wing

in supersonic

flow.

A eronaut.

 

W uart.

4>

 

231— 44.

 

 

 

 

 

 

 

 

 

 

 

206. M i l e s

J .

W .

(1953e). V irtual

momentum

and slender

body

 

theory. Q uart. J .

Mech. Appl. M ath. 6 ,

286 — 9.

 

 

 

 

207.М'ЛЧе S J . W. (1953Г). A note on subsonic edges in unsteady supersonic flow. Quart. Appl, Math. 11, 363—7.

208.

M i l e s

J .

W.

(1953g). Math. Rev. 14. 599.

 

.209.

M^i I e s

J .

W.

(1953h). Transient loading of slender bodies

 

of revolution. U . S. Naval Ordnance Report, № 2052, Inyokern,

 

California.

 

 

 

 

 

 

210. M i l e s

J .

W.

(1953i).

On radiation

and

scattering

from

 

slamni cylinders.

J . Acoust. Soc. Amer. 25, 1087—9.

 

 

i I e s

J .

W.

(1954a). On the transformation of the lineari­

 

zed equation

of unsteady supersonic flow. Quart. Appl. M ath.

 

12, 112.

 

 

 

 

 

 

212. M i l e s

J .

\V.

(1954b). Linearization of the equations of

 

nonsteady flow in a compressible fluid.

J .

Math. Phys.

33,

 

1 3 5 - 4 3 .

 

 

 

 

 

 

 

213. M i l e s

J .

W.

(1943c). On the transonic drag of accelerated

 

bodies. J . Aero. Sci. 20, 644—5.

 

 

 

211. M i l e s

J .

W.

(1954d). On the nonlinear thickness

effect

 

for a supersonic oscillatind

airfoil. J . Aero. Sci. 21, 714— 15.

215. M i l e s

J .

W.

(1955). Unsteady Supersonic Flow. Baltim ore:

 

U. S. Air Force Air Research and Development Command.

216.M i l e s J . W. (1956a). A first order formulation of the uns­ teady supersonic flow problem for finite wings. J . Aero. Sci. 23,

217.M i l e s J . W. (1956b). The compressible flow past an oscilla­

 

ting airfoil in a wind tunnel. J . Aero. Sci. 23, 671— 8.

218.

M i l e s

J . W. (1956c).

On the aerodynamic instability of

 

thin panels, J . Aero, Sci.

23, 771— 80.

 

219.

M i l e s

J .

W.

(1957).

Supersonic

flutter

of a cylindrical

 

shell. J .

Aero.

Sci.

24, 1

0 7 - 1 8 ; P art

11, 25,

313— 16 (1958).

220.M i l n e R. D. (1955). The unsteady aerodynamic forces on deforming low a ^ e ct ratio wings and slender wing-body com­

 

binations, Rep. Coll. Aero., Cranfield,

№ 94.

 

 

 

 

 

M i r e l s

H.

(1954),

Aerodynamics of slender wings and wing-

 

body combinations having swept trailing edges.. N.

A. C. A.

 

Tech.

Note,

№ 3105.

 

 

 

 

 

 

 

 

 

 

 

222, M o l l o - C h r i s t e n s e n

 

E.

and

 

A s h l e y

H.

(1954).

 

Applicability of piston theory to the flow around wings in uns­

 

teady

motion.

J .

Aero. Sci.

21,

770— 80.

CM.

также

L a n -

 

d a h I

 

II др.

(1955).

 

 

 

 

 

 

 

 

 

 

 

223,

M O г g a n

H .,

R u n у a'n

H.

and

H u c k e l

V.

(1958).

 

Theoretical

considerations of

flutter

at

high

Mach,

numbers.

 

J . Aero. Sci. 25,

371— 81.

 

 

 

 

 

 

 

 

 

 

224,

M o r s e

P.

M.

and

R u b e n s t e i n

 

P,

(1938),

Diffraction

 

of waves by ribbons and slits. Phys. Rev. 54,

895— 8.

 

225,

M o s k o w i t z

B.

and

M o e c k e l

W .

(1950). First-order

 

theory for unsteady motion of thin wings at supersonic speeds.

 

N. A. C. A. Tech. Note, № 2034.

 

 

 

 

 

 

 

 

226,

M u l t h o p p

H. (1951),

A unified

theory

of supersonic wing

 

flow, employing conical fields. R . A.

E.

Rep. A ero.,

№ 2415.

'227. M u n k

M.

 

M,

(1923).

The aerodynamic

forces

on

airship

 

hulls. N. A.

C. A. Rep. № 184.

 

 

 

 

 

 

 

 

Соседние файлы в папке книги