Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 700241.doc
Скачиваний:
11
Добавлен:
01.05.2022
Размер:
1.54 Mб
Скачать

Некоторые специальные задачи конвективного теплообмена Теплоотдача жидких металлов

Основные преимущества жидких металлов как теплоносителей:

  1. большой коэффициент теплопроводности и большая плотность;

  2. металлы можно нагревать до высоких температур при обычном давлении.

Обычно в качестве теплоносителей используют щелочные металлы ( K, Na, Li и т.д.), тяжелые металлы (Hg, Pb и т.д.) и их сплавы.

Жидкие металлы отличаются от других теплоносителей очень малым числом Прандтля. Возьмем для сравнения масло, воду, воздух и жидкие металлы:

  • масла - Pr≈10÷1000

  • вода – Pr ≤1÷10

  • воздух - Pr  0,7

  • жидкие металлы – Pr ≈0,005÷0,05

Как мы видим из примера разница не в несколько, а в десятки раз. Как же так выходит? Основная причина заключается в том, что жидкие металлы имеют очень большой коэффициент теплопроводности . И если для масла, воды и воздуха он варьируется от 0,1÷0,15, 0,5÷0,6, 0,02÷0,05 соответственно, то для жидких металлов он имеет значения от 10 и выше (для примера: Na=85, Hg=10, Pb=35 Вт/(м*К)).

Вследствие этого у жидких металлов ламинарный подслой не дает большого сопротивления. Отсюда и очень большие коэффициенты теплоотдачи, как и при ламинарном движении, так и при турбулентности.

Особенности такого теплообмена – наличие контактного термического сопротивления. Причина таится в образовании окислов и скоплении примесей на границе “жидкий металл – твердая стенка”. И учесть или рассчитать это контактное термическое сопротивление довольно таки сложно.

Теплоотдача при течении газов с большой скоростью

Во всех ранее рассмотренных процессах теплообмена пренебрегали теплом, выделявшимся в потоке за счет трения. Но, к сожалению, при рассмотрении газов и их движения с большими скоростями (что особенно характерно для авиации) пренебречь этим теплом нельзя. Как уже известно, энергия движущегося потока может быть представлена в виде суммы его энтальпии и кинетической энергии и для 1 кг вещества это будет иметь вид:

где h – энтальпия (Дж/кг), а - скорость (м/с).

Если, к примеру, газ затормозить адиабатно т.е. без отвода тепла, то его энтальпия станет равной:

Где h0 – энтальпия адиабатного торможения. Отсюда , принимая , что Ср=const получим:

,

где Т0 называется температурой адиабатного торможения.

К примеру, теплоемкость воздуха Ср≈1000 Дж/(кг0С) при температуре равной 293К. Поэтому различие между температурой адиабатного торможения и обычной температурой при скоростях не более 100 м/с не превышает 50C, но при дальнейшем увеличении скорости это отличие будет возрастать за счет наличия квадрата скорости. При скорости = 1000 м/с Т0-Т=5000С.

В реальных условиях торможение осуществляется вблизи какой-либо твердой поверхности. При этом тепло выделяется внутри пограничного слоя и одновременно отводится в поток или к твердой поверхности либо же в двух этих направлениях. Даже если изолировать твердую поверхность и отвод к ней тепла будет отсутствовать, то все равно будет проходить теплообмен между пограничным слоем и ядром потока. Это приводит к тому, что температура стенки оказывается немного ниже или выше, чем температура адиабатного торможения. Температура адиабатной стенки выражается как:

Где r – коэффициент восстановления. Если r > 1, то Tа.с. > Т0 и если r < 1, то Tа.с. < Т0 Коэффициент восстановления зависит от соотношения интенсивностей двух одновременных процессов: выделение тепла в пограничном слое за счет трения и отвода его во внешнее течения ( с учетом того, что стенка теплоизолированная). Первый процесс определяется кинематическим коэффициентом вязкости ν, второй же коэффициентом температуропроводности a. Если ν > α, то и выделение тепла преобладает над его отводом, следовательно, r > 1. И наоборот при ν < α Рr<1 и следовательно Tа.с. < Т0. Конкретная величина коэффициента восстановления зависит от режима течения, вида обтекаемой поверхности и других факторов. К примеру, для ламинарного течения на пластине , для турбулентного течения , а при поперечном же обтекании трубы воздухом r≈0,92.

Расчет теплоотдачи производят по формуле:

,

где . Коэффициент теплоотдачи для турбулентного течения в трубке: , где εl – поправка на длину трубки (при Х/d≥15, εl=1). Здесь Tr – средняя термодинамическая температура газа в трубке, а T0 – температура адиабатного торможения.