Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Савельев С.В. Происхождение мозга.pdf
Скачиваний:
222
Добавлен:
19.10.2020
Размер:
8.45 Mб
Скачать

постсинаптическими потенциалами, а синапсы — тормозными.

71

При синаптической передаче огромную роль играют состояние клетки и используемые медиаторы. В синаптических пузырьках может находиться не один медиатор, а несколько. Они могут одновременно оказывать альтернативное действие на постсинаптическую мембрану. Этим достигается тончайшая модуляция информации, передаваемой от клетки к клетке. Надо отметить, что в одной клетке может одновременно сосуществовать множество модификаций синаптических каналов химической природы. Учитывая общее количество медиаторов и модуляторов, используемых в контактах, можно сказать, что на уровне передачи сигнала мы сталкиваемся с почти неисчерпаемым разнообразием индивидуализации сигналов, проходящих через химический синапс нервной клетки.

Таким образом, взаимодействия между нервными клетками регулируются несколькими процессами одновременно. В самом общем виде это выглядит следующим образом. Огромное влияние оказывает общий метаболизм организма. Очень значимы состав и количество пищи, обмен кислорода и водно-солевой баланс. Изменение любого из этих компонентов приводит к радикальному изменению поведения. Одновременно на весь организм влияют инертные и плохо контролируемые нейрогормональные процессы. Повышение гормональной активности, вызванное самой нервной системой, подчиняет себе её работу. Это генерализованное и инертное воздействие на нервную систему приводит к изменению поведения. На таком фоне происходят многообразные электрохимические взаимодействия между нейронами и органамимишенями. При этом каждая клетка обладает тысячами модифицированных контактов, переносящих постоянно изменяющуюся информацию о внешнем мире, индивидуальном опыте или врождённой программе поведения. Понятно, что такие процессы должны быть хоть как-то организованы во времени и пространстве, разделены по самым общим функциям и дифференцированы по источникам сигналов. Результатом такого пространственного разделения нейронов «по интересам» и стала структурная организация нервной системы.

72

Уровни организации нервной ткани

Существует традиционное представление, что нервная система сложная или очень сложная. Однако сложная нервная система не столь недоступна для изучения, поскольку в её основе лежат те же принципы, что и в основе простой. Элементарным звеном нервной системы является нейрон, о котором уже говорилось. Нейрон

— это специализированная клетка, которая способна получать, перерабатывать, хранить и передавать информацию. Однако нейрон, «вырванный» из своего окружения, не способен управлять поведением. Для создания хоть какого-нибудь поведения, отличающегося от физиологических реакций клеток растений, необходимо некоторое количество нейронов. Исследования простых нервных систем у круглых червей показали, что минимальная нервная система состоит из 30-100 нейронов. От такой сети уже можно ожидать реакций, напоминающих поведение более сложно организованных животных. Важно отметить, что даже при равном числе клеток существенные отличия в поведении возникают при особенностях морфологической компоновки нервной системы. Нейронам небезразлично, как они «организованы» и где «лежат» в организме. От этого зависит, как будет обрабатываться информация и насколько эффективно будет адаптироваться организм к изменяющимся условиям среды.

§ 10. Типы объединения нервных клеток

Нервные клетки объединены в нервные системы различным образом. В простейшем случае эти элементы распределены вполне равномерно по всему телу животного или по большей его части (Anderson, 1990). Равномерное распределение нервных клеток обычно называют диффузной нервной системой. Самым известным животным с такой нервной системой является пресноводная гидра, которая может неспецифически реагировать на любое раздражение — сжиматься (см. рис. I-2). Её диффузная нервная сеть крайне проста по структуре и архаична по происхождению. По-видимому, это филогенетически самый древний способ объединения отдельных нервных клеток: клетки расположены равномерно по телу или органу животного и снабжены немногочисленными отростками, объединяющими нейроны в общую сеть (рис. I-13). Выделенных и протяжённых волокон в такой сети нет, а отростки клеток связывают только соседние нейроны. В сеть входят отростки, идущие от воспринимающих клеток эпителия или от рецепторов, а из сети отходят двигательные волокна, оканчивающиеся на поверхности мышечных клеток (см. рис. I-13).

73

Рис. I-13. Основные структурные уровни организации головного мозга, ганглиев и периферической нервной системы.

Самый простой уровень одиночная нервная клетка, которая может как рецептировать, так и генерировать сигналы. Такие клетки способны объединяться в системы с разделением функций (I). Более сложным вариантом являются ганглиозные скопления тел нервных клеток (II). Формирование ядер (III) или (слоистых) стратифицированных структур (IV) является наиболее сложным уровнем морфологической дифференцировки нервной системы.

74

Другой вариант организации представляет собой более компактную нервную систему. В этом случае чувствительные вставочные и двигательные нейроны собраны в небольших скоплениях, которые называют нервными ганглиями, или узлами (Parker, 1919). Скопления нервных клеток у беспозвоночных не содержат внутренней полости. Внутренняя зона ганглия состоит из нервных клеток, окружённых нейропилем, представляющим собой переплетение отростков этих клеток. В ганглиях располагаются чувствительные нейроны или оканчиваются их аксоны, что позволяет ганглиозным клеткам получать информацию с периферии тела беспозвоночного. Аксоны двигательных и вставочных нейронов, выходящие из ганглиев, образуют более или менее длинные проводящие пути, связывающие между собой разобщённые ганглии и интегрирующие работу периферических органов и нервной системы.

У хордовых организация нервной системы более сложная. Наряду с диффузными сетями и ганглиями у позвоночных формируется центральная трубчатая нервная система. Возникает головной и спинной мозг с полостью внутри, которая называется спинномозговым каналом или мозговыми желудочками (см. рис. I-11). Размеры центральной трубчатой нервной системы позвоночных позволяют разместить между чувствительным и двигательным нейронами большое количество вставочных нейронов, которые обрабатывают получаемую информацию (рис. I-14). От качества переработки этой информации зависит сложность поведения животного или интеллектуальная деятельность человека.

Эти принципы организации нервной системы общие как для беспозвоночных, так и для позвоночных животных. Однако существует ряд принципиальных различий, которые следует подчеркнуть.

Во-первых, нейроны нервной системы беспозвоночных и позвоночных существенно различаются как по размерам, так и по форме.

Во-вторых, у большинства беспозвоночных нет полости внутри мозга — мозговых желудочков. Исключением являются головоногие моллюски. В их головных ганглиях есть внутренние полости.

В-третьих, у беспозвоночных стратификация нейронов значительно менее распространена, чем у позвоночных.

Эти морфологические различия свидетельствуют о том, что эволюция нервных систем позвоночных и

беспозвоночных животных происходила в рамках очень несхожих ограничений (Гессе, 1913; Pechenic, 1991) . У беспозвоночных с их маленькой нервной системой было бы невозможным преобладание регуляционного эмбрионального развития нервной системы над генетически детерминированным. Это связано с тем, что при регуляционном развитии судьба эмбриональной клетки

75

Рис. I-14. Основные центры нервной системы позвоночных на примере лягушки.

Головной мозг окрашен в красный цвет, а спинной в синий. Вместе они составляют центральную нервную систему. Периферические ганглии зелёные, головные нервы оранжевые, а спинальные чувствительные ганглии голубые. Взаимодействие центров осуществляется в результате постоянного обмена информацией между внешними и внутренними рецепторными системами. Обобщение и сравнение информации происходят в головном мозге.

76

вероятностна и зависит от межклеточных взаимодействий. В указанном случае требуются некоторый переизбыток эмбриональных нейробластов, их конкурентное поведение при дифференцировке и программированная гибель клеток. Такой переизбыток эмбрионального материала практически невозможен у беспозвоночных. В результате нервная система развивается преимущественно по детерминационному типу. Это означает, что число нервных клеток, их связи и даже ветвление дендритов предопределены генетически. Интересно отметить, что генетическая детерминация развития дрозофилы столь велика, что спустя 700 поколений нейроны имеют идентичное с первым поколением ветвление дендритов.

Если попытаться количественно выразить соотношение детерминированных и регуляционных событий в развитии нервной системы беспозвоночных, то оно составит примерно 70 к 30. Понятно, что при таком соотношении практически не остаётся места для морфологической индивидуализации нервной системы. Более того, достаточно жёсткая детерминированность строения создаёт возможность эффективной передачи по наследству разнообразных форм поведения. В связи с этим у беспозвоночных мы встречаем преимущественно инстинктивное поведение, его незначительную индивидуализацию без «высоких» психологических свойств (Pechenic, 1991). Важным функциональным отличием беспозвоночных является нейрогормональная регуляция поведения. Нервная и эндокринная системы образуют интегрированные нейроэндокринные комплексы. У наиболее эволюционно продвинутых видов беспозвоночных в рефлекторные реакции и обработку сенсорной информации входит нейрогормональный этап. Участие нейрогормонального этапа в работе головных ганглиев может различаться, но его значение у беспозвоночных несопоставимо больше, чем у позвоночных животных.

У большинства высших беспозвоночных формируется специальный нейрогормональный орган, расположенный позади головных ганглиев. Эти образования названы нейрогемальным органом, а при слиянии с головными ганглиями или нервами — нейрогемальной зоной. Существование этого центра приводит к тому, что поведение животного при любой активации головных ганглиев начинает контролироваться выделяемыми гормонами нейрогемальной системы. Начавшись с активности нейронов,