Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзаменационные билеты с ответами 2005-2006.doc
Скачиваний:
100
Добавлен:
20.05.2014
Размер:
437.76 Кб
Скачать

Билет №27

1. Аналитический метод кинематического расчета механизмов.

Аналитический метод кинематического исследования рычажных механизмов основан на условии замкнутости контуров их кинематических цепей. Составляя уравнения проекции звеньев на соответствующие оси координат, устанавливают функциональную связь между кинематическими параметрами, характеризующими движение входных и выходных звеньев механизмов. При решении задач кинематического анализа пространственных рычажных механизмов, а также пространственных разомкнутых кинематических цепей (промышленных роботов и манипуляторов), широко используют векторный метод, основанный на общих положениях векторной алгебры, и включающий в себя элементы теории матриц. Применение аналитического метода затрудняется сложностью получаемых расчётных уравнений, поэтому именно в этих случаях целесообразно использование ЭВМ.

2. Уравнение движения механизма в энергетической (интегральной) форме.

,,,,,, где- момент движущих сил скорости,- момент сил сопротивления..

Билет №28

1. Уравнение движения механизма в дифференциальной форме.

,,,,,, где- момент движущих сил скорости,- момент сил сопротивления..

2. Качественные показатели работы зубчатых передач. Влияние смещения исходного производящего контура инструмента на качественные показатели работы зубчатого зацепления.

Качественные показатели зубчатого зацепления:

1. Коэффициент перекрытия. Характеризует плавность, бесшумность работы передачи, очерёдность смены пар зубьев. Для обеспечения плавной бесшумной работы механизма необходимо, чтобы каждая последующая пара зубьев входила в зацепление раньше, чем из зацепления выйдет предыдущая пара зубьев. Положительное смещение исходного контура приводит к уменьшению коэффициента перекрытия.

2. Геометрический коэффициент удельного скольжения. Характеризует износостойкость профилей зубьев. Суммарное положительное смещение исходных контуров приводит к уменьшению коэффициентов удельного скольжения, т.е. к повышению износостойкости профилей зубьев.

3. Геометрически коэффициент удельного давления. Характеризует контактную прочность. Суммарное положительное смещение исходных контуров приводит к уменьшению коэффициента удельного давления, то есть приводит к повышению контактной прочности.

4. Коэффициент формы зубы. Характеризует изгибную прочность. Положительное смещение приводит к повышению изгибной прочности.

Цели смещения исходного контура:

- Устранение подреза ножки зуба.

- Обеспечение заданного межосевого расстояния.

- Улучшение качественных показателей зацепления: повышение плавности, бесшумности работы механизма, повешение износостойкости профилей зубьев, повышение контактной прочности, повышение изгибной прочности.

Билет №29

1. Структурный синтез шарнирно-рычажных механизмов. Группы Ассура, их классификация. Формула строения механизма его класс и порядок.

Задачами структурного анализа являются: выявление особенностей строения, определение числа степеней свободы, порядка и класса механизма с целью установления рациональных методов и последовательностью кинематического расчёта.

Любой механизм включает в свой состав простейший начальный или первичный механизм, который состоит из одного подвижного звена и стойки, связанной либо поступательной, либо вращательной парой.

Более сложные механизмы образуются из простого начального механизма путём присоединения к нему структурных групп или групп Асура. Группа Асура – это такая кинематическая цепь, которая, будучи присоединённой свободными (незанятыми) элементами пар к стойке, образует неподвижную систему, то есть W=0. (3n-2P5=0)

Структурный синтез механизмов основан на методе «наслоения» или присоединения к имеющейся кинематической цепи механизма групп с числом степеней подвижности, равным нулю.

Структурная группа имеет порядок и класс. Порядок определяют по числу свободных (независимых) элементов кинематических пар, а класс – по числу кинематических пар, образующих наиболее сложный замкнутый контур.

Класс и порядок механизма устанавливают по структурной группе, имеющей наиболее высший порядок и класс. Степень свободы пространственного механизма:

W=6n-5P5-4Р4-3Р3-2Р21 (формула Малышева). Степень подвижности плоского механизма: W=3n-2P5- Р4 (формула Чебышева).

Исследуя структуру механизма, необходимо выделить входное звено и разбить кинематическую цепь механизма на простейшие группы. Характер образования кинематической цепи механизма указывается формулой его строения. Например, формула: I→ II (2-3)→II (4-5) указывает, что механизм образован последовательным присоединение двух двухпроводковых групп; формула: I→ II (2-3)→III (4-5-6-7) говорит о присоединении к двухпроводковой группе

II (2-3) трёхпроводковой группы III (4-5-6-7).