Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
0
Добавлен:
24.03.2024
Размер:
10.74 Mб
Скачать

§ 2. Методы исследования

Исследование функции системы внешнего дыхания должно быть построено таким образом, чтобы учитывались ее взаимосвязи с системами кровообращения, крови и центральной нервной системой.

При изучении функции внешнего дыхания помимо клиническо­го исследования проводится определение различных параметров, характеризующих все этапы внешнего дыхания.

Клиническое исследование начинается, как обычно, с собира­ния анамнеза.

Выясняют, не было ли в семье обследуемого больных туберку­лезом легких. Расспрашивая о перенесенных им заболеваниях, об­ращают внимание на воспаление легких (если болел, то как часто и насколько продолжительно), грипп (сколько раз в год, какова длительность заболевания). Выясняют, не бывает ли субфебриль-ной температуры (37,1—37,2 по вечерам), не состоял ли на учете в туберкулезном диспансере, обращают внимание на наличие кашля (характер: сухой, приступами и т. д.), мокроты (количество, цвет, консистенция), одышки и приступов удушья (типа бронхиальной астмы), болей в груди при дыхании (локализация и интенсив­ность) — такие боли наблюдаются чаще всего при сухом плеврите, при межреберной невралгии и миозите межреберных мышц.

Объективное исследование включает осмотр, пальпацию, пер­куссию к аускультацию.

Осмотр. Выясняют, нет ли западений надключичных впадин, отставания какого-либо отдела грудной клетки при дыхании, кото­рое может свидетельствовать о патологических изменениях со сто­роны легких, плевры или грудной клетки. Определяют частоту и тип дыхания.

Частота дыхания у здоровых людей равна обычно 14— 18 дыханиям (вдох и выдох) в 1 мин. У спортсменов она, как пра­вило, меньше (от 8 до 16 в 1 мин.), но глубина дыхания больше. Учащение дыхания (независимо от того, сочетается оно с углубле­нием или нет) называется одышкой. Она наблюдается в физиологи­ческих условиях при физической нагрузке (зависит от увеличения потребности в кислороде), а также при эмоциональном напряже­нии. Одышка, не адекватная физическому напряжению, свидетель­ствует о каких-либо патологических изменениях.

Тип дыхания может быть грудным, брюшным и смешанным. При грудном типе увеличение объема легких при вдохе происхо­дит за счет расширения грудной клетки благодаря движению ре­бер (главным образом экскурсии верхних и нижних ребер) и подъ­ему ключиц. При брюшном, или диафрагмальном, типе объем лег­ких увеличивается за счет опускания диафрагмы при почти пол­ном отсутствии движения ребер и расширения грудной клетки. При этом типе дыхания во время вдоха отмечается выпячивание стенки живота за счет некоторого смещения внутренностей при опускании диафрагмы. В смешанном дыхании участвуют оба механизма, свя­занные с увеличением объема легких при вдохе.

Пальпация. Ощупыванием проверяют, нет ли болезненных точек в том или ином участке грудной клетки.

Перкуссия. Выстукивание легких, заполненных обычно воз­духом, позволяет по изменению звука определить наличие в них каких-либо уплотнений или разрежений (полостей). Такого рода изменения являются патологическими. Например, при воспалении легких пораженный участок легочной ткани уплотняется, а при туберкулезе легких может образоваться полость — каверна.

Перкуссией легких определяют также подвижность нижних их границ при вдохе и выдохе, характеризующую амплитуду движений диафрагмы. В норме нижняя граница легких опускается при глубо­ком вдохе на 3—5 см, при некоторых же заболеваниях легких, или брюшной полости, или диафрагмы, а также при ожирении подвиж­ность легочных краев ограничена.

Аускультация. Путем выслушивания воспринимаются зву­ки, возникающие при движении воздуха по воздухоносным путям и альвеолам во время вдоха и выдоха. Характер возникающего при этом звука зависит от их состояния. Таким образом, по аускультативным изменениям можно судить о состоянии бронхов и легких и особенностях патологических изменений в них. В нормальных усло­виях обычно выслушивается дыхательный шум (так называемое везикулярное дыхание), при патологическом процессе, связанном с изменениями в бронхах и альвеолах легких, характер возникаю­щих при дыхании звуков существенно меняется и прослушиваются различного рода хрипы.

Огромное значение в оценке состояния системы внешнего дыха­ния имеет рентгеновское исследование. При рентгено­скопии изучается ее структура и функция непосредственно во вре­мя исследования. Различная степень затененности отдельных участ­ков легких, изменяющаяся при акте дыхания, дает возможность оце­нить состояние вентиляции и кровотока; отчетливая видимость дви­жений ребер и диафрагмы позволяет определить координацию их движений. Эти движения можно зафиксировать на рентгенокимограмме. На ней лучше, чем при рентгеноскопии, видны структурные изменения легочной ткани (этот метод исследования используется тогда, когда при рентгеноскопии выявляются изменения в легочной ткани, требующие более детального анализа).

В последнее время широко применяется метод флюорогра­фии (см. главу 8).

Из лабораторных методов исследований используется исследование мокроты (микроскопически).

Инструментальными методами исследования функционального состояния системы внешнего дыхания выявляется ряд показателей, которые можно разделить на три группы, связанные с различными этапами функции дыхания.

В первую группу входят показатели, характеризующие функцию внешнего дыхания на этапе «наружный воздух — альвео­лярный воздух», т. е. вентиляцию. К ним относятся, кроме часто­ты, глубины и ритма дыхания, сила вдоха и выдоха, все легочные объемы (общая емкость легких и ее составляющие), вентиляцион­ные объемы (минутный объем дыхания, максимальная вентиляция легких и др.). Эта группа показателей имеет существенное практи­ческое значение, так как позволяет получить объективные количе­ственные оценки таких важных параметров, как вентиляция, брон­хиальная проходимость и др.

Все эти показатели исследуются как в покое, так и при функ­циональных пробах. Исследование данной группы показателей ме­тодически просто, не требует сложной аппаратуры и может быть проведено в любых условиях.

Ко второй группе принадлежат показатели, которые ха­рактеризуют внешнее дыхание на этапе «альвеолярный воздух — кровь легочных капилляров», т. е. диффузию. Их изучение слож­нее, так как требует обязательного исследования газового состава выдыхаемого воздуха, альвеолярного воздуха, определения погло­щения кислорода, выделения углекислого газа и др. Для этого не­обходима специальная, иногда сложная, аппаратура. Поэтому часть этих показателей изучается пока только в специально оборудован­ных лабораториях. Но благодаря тому, что в последнее время уси­ленно разрабатывается доступная практике аппаратура, эти иссле­дования начинают все шире внедряться в практическую работу врачей. Так, имеются, например, отечественные приборы — спирографы (стационарные и переносные), автоматические экспресс-ана­лизаторы кислорода и углекислого газа в любой газовой смеси и др.

К третьей группе относятся показатели, характеризующие газовый состав крови. Исследование насыщения артериальной кро­ви кислородом и его изменений, этого конечного этапа внешнего дыхания, стало сейчас широко возможным в связи с новым методом исследования — оксигемометрией, которая позволяет бес­кровно, длительно и непрерывно исследовать изменения насы­щения артериальной крови кислородом.

Правда, с помощью этого метода нельзя определять содержание объемного процента кислорода и углекислого газа в крови (для этого нужно пунктировать артерию), но, поскольку наибольшее значение имеет определение изменений насыщения крови кислоро­дом, метод оксигемометрии получает все большее распространение. Благодаря ему такое исследование стало доступным не только для врачей, но и для тренеров и преподавателей (см. дальше).

Исследование вентиляции

Важное значение исследования всех основных пара­метров, характеризующих вентиляцию, обусловлено тем, что от ее состояния зависят уровни парциального давления кислорода и уг­лекислоты в альвеолярном воздухе, определяющие диффузию этих газов через альвеолярно-капиллярную мембрану.

К основным параметрам, характеризующим вентиляцию, отно­сятся легочные объемы, мощность вдоха и выдоха, сила дыхатель­ной мускулатуры, частота и глубина дыхания.

Легочные объемы. В понятие «легочные объемы» входят общая емкость легких и ее составляющие (жизненная емкость легких — ЖЕЛ и остаточный объем), минутный объем дыхания, максималь­ная вентиляция легких.

Под общей емкостью легких (ОЕЛ) понимают то мак­симальное количество воздуха, которое могут вместить воздухонос­ные пути и легкие. ОЕЛ состоит из жизненной емкости легких (ЖЕЛ) и остаточного объема (ОО).

ЖЕЛ представляет собой объем воздуха, который исследуемый может выдохнуть при максимально глубоком выдохе после макси­мально глубокого вдоха. Этот выдох производится в спирометр или в специальные прорезиненные мешки (мешок Дугласа, метеобал­лон), после чего объем этих мешков определяется через сухие газо­вые часы. Выдох может быть сделан и непосредственно в сухие газовые часы. ОО — это тот объем воздуха, который остается в лег­ких после максимального выдоха. Величина ЖЕЛ легко определяет­ся прямым измерением выдохнутого воздуха, а ОО — только кос­венным путем. Для этого существуют специальные методы (азотография и др.), которые еще не вошли в широкую врачебную прак­тику и используются только с научно-исследовательскими целями. У здоровых лиц молодого возраста 75—80% ОЕЛ занимает ЖЕЛ, 20—25% составляет ОО.

Занятия спортом и физической культурой способствуют увеличе­нию доли ЖЕЛ в структуре общей емкости легких, что благоприят­но отражается на эффективности вентиляции. Наоборот, увеличе­ние доли ОО за счет уменьшения доли ЖЕЛ в структуре общей ем­кости легких снижает эффективность вентиляции.

Чем значительнее величина ОО, тем больше нужно вдыхаемого воздуха для создания необходимого парциального давления в аль­веолярном воздухе. Поэтому у лиц с большим ОО и соответствен­но низкой ЖЕЛ обычно наблюдается одышка.

Таким образом, очевидно, что от величины ОО зависит поддер­жание постоянного состава альвеолярного воздуха. Поэтому иссле­дование ОО имеет существенное значение и в спортивной медицине, в связи с чем важной задачей является разработка простой, точной и доступной методики ее определения.

При исследовании легочных объемов необходимо учитывать следующее. Как известно, объемы газа существенно изменяются в зависимости от температуры и атмосферного давления. Следова­тельно, если сравнивать полученную величину легочных объемов у одних и тех же лиц в различных условиях (исследованных, напри­мер, на уровне моря и в горах), можно совершить существенную ошибку: фиксировать уменьшение или увеличение этого показателя, не учитывая, что эти изменения могут зависеть только от влияния внешних условий. Поэтому при такого рода исследованиях необхо­димо вносить соответствующую поправку, сводящую на нет влияние внешних условий и приводящую легочные объемы к стандартным условиям. С этой целью обычно пользуются двумя стандартами: 1) стандартом нулевых условий и 2) стандартом внутрилегочным.

Стандарт нулевых условий (STPD — по американским авторам и СТДС — по русским, что означает Стандартные Темпера­тура, Давление, Сухой) характеризуется приведением величины объема газа к 760 мм рт. ст., температуре 0° и полной сухости, т. е. отсутствию паров воды в измеряемом объеме газа. Приведение к этому стандарту требуется при необходимости установить, какой объем занял бы измеренный газ или смесь газов (в частности, вы­дыхаемый воздух), если бы он был освобожден от паров воды ох­лаждением до 0° и измерен при атмосферном давлении 760 мм рт. ст. Это особенно важно в случаях, когда основное значение имеет не геометрический объем, а число молекул в измеренном объеме газа. В связи с этим при необходимости определения количества погло­щенного кислорода и выделенной углекислоты объем газа всегда приводится к этому стандарту.

Стандарт внутрилегочный (BTPSпо американским авторам или ТТДН—по русским, что значит Температура Тела, Давление окружающей среды, Насыщение водяными парами) ха­рактеризуется приведением объема газа к атмосферному давлению во время проведения исследований, температуре тела 37° и полно­му насыщению парами воды при этой температуре. Приведение к этому стандарту производится тогда, когда важно выяснить не химический состав или калорическую ценность газа, а геометрический объем, который он занимает в легких.

П риведение к стандартным условиям де­лается путем умножения фактического ле­гочного объема на тот или иной коэффици­ент, который находят по специальным таб­лицам или рассчитывают по определенной формуле.

Необходимо всегда указывать, особенно при определении газообмена, оценке энер­гетических затрат и др., к каким стандарт­ным условиям приведен легочный объем.

При изучении легочных объемов как та­ковых, например при измерении вентиляции легких, когда эти объемы являются только мерой их емкости, внесение указанных по­правок не обязательно. Ведь газ в легких и газ в приборе, посредством которого изме­ряются легочные объемы, находятся под одним и тем же атмосферным давлением, и, поскольку изменение этого давления сказы­вается одинаково на объемах воздуха в легких и в приборе, это не оказывает никакого влияния на результаты измерений. То же отно­сится и к поправке на температуру, так как замер объемов выдох­нутого воздуха обычно производится сразу же после выхода и тем­пература его не успевает изменяться. Только в тех случаях, когда такие измерения проводятся в специальных условиях (холод, жара и т. п.), поправка на температуру должна быть внесена, и об этом обязательно нужно указать в протоколе исследования.

Для расчета должных величин в отношении легочных объемов, поглощения кислорода и вентиляции, поскольку они связаны с энергетическими процессами, проще и удобнее исходить из таблиц Гарриса — Бенедикта. Они давно и широко используются во всем мире при исследовании ос­новного обмена. С их помощью определяется число килокалорий в сутки в покое с учетом пола, роста, веса и возраста. Эти таблицы имеются во всех практикумах по физиологии, в пособии по практическим занятиям по врачебному контролю. По специальным таблицам (Ю. Я. Агапов, А. И. Зятюшков), легко можно найти должную величину для любого легочного объема.

К лассификация легочных объемов, которая используется и сего­дня, разработана Гутчинсоном (1846 г.) — автором метода спиро­метрии и конструктором спирометра (рис. 42).

Количество воздуха в легких зависит от многих факторов. Ос­новные из них — объем грудной клетки, степень подвижности ребер и диафрагмы, состояние дыхательных мышц, воздухопроводящих путей и самой легочной ткани, ее эластичность, степень кровенапол­нения.

Грудная клетка, обусловливающая границы возможного расши­рения легких, может находиться в четырех основных положениях: максимального вдоха, максимального выдоха, спокойного вдоха и спокойного выдоха. При каждом из них соответственно изменяют­ся легочные объемы (рис. 43).

Как видно на рис. 43, при спокойном дыхании в легких после вы­доха остается резервный объем выдоха и остаточный объем, при спокойном вдохе к этому добавляется объем вдоха. Объемы вдоха и выдоха в целом носят название дыхательного объема. При мак­симальном выдохе в легких остается только остаточный объем, при максимальном вдохе к остаточному объему, резервному объему выдоха и дыхательному объему добавляется резервный объем вдо­ха, что вместе называется общей емкостью легких.

Все легочные объемы имеют определенное физиологическое значение. Так, сумма остаточного объема и резервного объема вы­доха — это альвеолярный воздух. Благодаря движению воздуха, со­ставляющего дыхательный объем, поддерживается необходимое для нормальной диффузии парциальное давление газов в альвео­лярном воздухе, обеспечивается поглощение организмом кислоро­да и выведение углекислого газа. Резервный объем вдоха определяет способность легких к добавочному их расширению; резервный объем выдоха поддерживает легочные альвеолы в определенном состоянии расширения и вместе с остаточным объемом обеспечи­вает постоянство состава альвеолярного воздуха.

Резервный объем вдоха, дыхательный объем и резервный объем выдоха составляют ЖЕЛ. Процентное соотношение этих величин различно у разных лиц и при разных состояниях организма. Оно колеблется в следующих пределах: резервный обмен вдоха — 55— 60%, дыхательный объем — 10—15% и резервный объем выдоха — 25—30% ЖЕЛ.

Все легочные объемы в норме не являются стандартными, не ме­няющимися. На их величину влияют положение тела, степень утом­ления дыхательных мышц, состояние возбудимости дыхательного центра и нервной системы, не говоря уже о профессии, занятиях фи­зической культурой, спортом и других факторах.

В функциональном исследовании системы внешнего дыхания спортсменов и физкультурников известное значение имеет исследо­вание так называемого вредного, или мертвого, пространства. Этим термином называется та часть дыхательных путей, в которых нахо­дится воздух, не достигающий альвеол и поэтому не участвующий в газообмене. Объем мертвого пространства равен в среднем 140 мл. В зависимости от колебания тонуса гладкой мускулатуры бронхов он может увеличиваться или уменьшаться.

Однако, поскольку определение фактического мертвого прост­ранства методически сложно, а учитывать его необходимо (напри­мер, при оценке глубины дыхания и эффективности вентиляции), следует все же пользоваться величиной равной 140 мл, не забывая о том, что это условная цифра.

Жизненная емкость легких (ЖЕЛ) определяется путем максимального выдоха в спирометр или сухие газовые часы (мето­дика определения ЖЕЛ изложена выше) после максимального вдо­ха. Величину ЖЕЛ выражают обычно в единицах объема, т. е. в лит­рах или миллилитрах. Она позволяет косвенно оценить величину площади дыхательной поверхности легких, на которой происходит газообмен между альвеолярным воздухом и кровью капилляров лег­ких. Иначе говоря, чем больше ЖЕЛ, тем больше дыхательная по­верхность легких. Кроме того, чем больше ЖЕЛ, тем больше мо­жет быть глубина дыхания и легче достигается увеличение объема вентиляции.

Таким образом, ЖЕЛ определяет возможность приспособления организма к физической нагрузке, к недостатку кислорода во вды­хаемом воздухе (например, при подъеме на высоту).

Существенную роль в оценке величины ЖЕЛ играет соотноше­ние составляющих ее объемов. Увеличение дыхательного объема при увеличении вентиляции, вызванном физической нагрузкой, про­исходит главным образом за счет резервного объема вдоха. Чем большая часть ЖЕЛ приходится на резервный объем вдоха, тем выше потенциальная возможность дыхательного объема, т. е. тем больше может быть увеличен объем вентиляции. Поэтому ЖЕЛ, в структуре которой резервный объем вдоха занимает большое мес­то, функционально более полноценна, чем ЖЕЛ той же величины, но с меньшим резервным объемом вдоха.

Все это позволяет оценить ЖЕЛ как показатель, определяю­щий функциональные возможности системы внешнего дыхания.

На величину ЖЕЛ оказывает влияние положение тела. Она больше при положении стоя, чем при положениях сидя и лежа. Поэтому исследование ее нужно проводить только в положении обследуемого стоя.

Снижение показателей ЖЕЛ всегда свидетельствует о какой-либо патологии. Увеличение ЖЕЛ было принято считать показа­телем повышенного функционального состояния аппарата внешне­го дыхания. Однако оказалось, что у спортсменов при значитель­ном повышении общего функционального состояния и росте спор­тивных результатов ЖЕЛ может совсем не увеличиваться или возрастает незначительно. Величина ЖЕЛ неодинакова у предста­вителей различных видов спорта. Следовательно, она зависит от спортивной специализации.

Таким образом, ЖЕЛ не может и не должна считаться единст­венным показателем повышения функции системы внешнего дыха­ния. Она определяет только функциональные возможности этой системы в отношении обеспечения организма необходимым количе­ством кислорода. Поэтому потенциальные возможности системы внешнего дыхания у человека с высокими показателями ЖЕЛ вы­ше (больше дыхательная поверхность и возможность углубления дыхания), чем у имеющего низкие показатели ЖЕЛ.

У мение полноценно использовать свою ЖЕЛ зависит от состоя­ния нервной регуляции дыхания. Занятия физической культурой, спортом развивают это умение. На величину ЖЕЛ оказывают влия­ние пол (у мужчин она больше, чем у женщин того же возраста), возраст (при старении ЖЕЛ уменьшается), а также рост и вес.

На зависимости ЖЕЛ от веса основано определение так назы­ваемого жизненного индекса, т. е. отношения показателя ЖЕЛ (мл) к весу (кг). Фактическая величина ЖЕЛ (учитывая огром­ный диапазон нормы — от 3500 до 8000 мл) может быть правильно оценена только при сравнении с должной величиной. Выражать ее следует не в объемных единицах, а в процентах к должной величи­не. При таком расчете одна и та же величина фактической ЖЕЛ, равная, например, 4000 мл, будет для высокого и полного человека составлять 80% должной, если его должная величина равна 5000 мл, а для худого и невысокого человека, у которого должная величина ЖЕЛ равна 3000 мл,—133%.

Только такая оценка фактических величин ЖЕЛ позволит тре­неру и преподавателю сделать конкретные практические выводы (например при снижении ЖЕЛ ниже 90% должной — о необходи­мости специальных упражнений).

Из большого числа различных расчетов должной ЖЕЛ наибо­лее простой, удобной является расчет по формуле Антони: должная ЖЕЛ (ДЖЕЛ) равна основному обмену (ккал), определенному по таблицам Гарриса — Бенедикта, умноженному на коэффициент 2,6 для мужчин и 2,3 для женщин.

Для здоровых лиц, не занимающихся спортом, фактическая ве­личина ЖЕЛ составляет 100% должной с отклонениями ±10%. Естественно, у занимающихся физической культурой и спортом фактическая величина ЖЕЛ будет больше 100% должной.

Как хорошо видно из табл. 2, одна и та же фактическая величи­на ЖЕЛ, выраженная в процентах к должной, приобретает совер­шенно различное значение.

Для выражения фактической величины ЖЕЛ в процентах к должной пользуются следующей формулой:

фактическая ЖЕЛ x 100

должная ЖЕЛ

Оценка изменений ЖЕЛ под влиянием различных факторов по­ложена в основу ряда функциональных проб. К их числу относят­ся проба Розенталя и проба, называемая динамической спиро­метрией.

Проба Розенталя, или спирометрическая кри­вая, представляет собой пятикратное измерение ЖЕЛ, проводимое через 15-секундные промежутки времени. Такое многократное определение составляет нагрузку, под влиянием которой может изме­няться ЖЕЛ. Увеличение ее при последовательных измерениях со­ответствует хорошей оценке этой пробы, уменьшение — неудовлет­ворительной, отсутствие изменений — удовлетворительной.

При динамической спирометрии величину ЖЕЛ, изме­ренную тотчас после дозированной физической нагрузки, сравни­вают с исходной величиной ЖЕЛ, полученной в покое. Принцип оценки такой же, как и при спирометрической кривой.

С помощью измерения ЖЕЛ можно определить бронхиаль­ную проходимость. Ее оценка имеет большое значение в ха­рактеристике вентиляции. Понятие «бронхиальная проходимость» противоположно понятию «сопротивление воздухоносных путей по­току воздуха»: чем меньше сопротивление, тем больше бронхиаль­ная проходимость, и наоборот. Величина ее непосредственно зави­сит от суммарного поперечного сечения всех воздухоносных путей, которое определяется тонусом гладкой мускулатуры бронхов и бронхиол, регулируемым нервно-гуморальным прибором. Измене­ние бронхиальной проходимости оказывает влияние на энергетиче­ские затраты, связанные с вентиляцией легких. При увеличении бронхиальной проходимости один и тот же объем вентиляции лег­ких требует меньше усилий. Систематические занятия спортом, фи­зической культурой совершенствуют регуляцию бронхиальной про­ходимости. Поэтому у спортсменов и физкультурников она лучше, чем у не занимающихся физической культурой, спортом.

Состояние бронхиальной проходимости можно определить с по­мощью форсированной ЖЕЛ (ФЖЕЛ), пробы Тиффно — Вотчала или величины мощности вдоха и выдоха.

Форсированная ЖЕЛ определяется как обычная ЖЕЛ, но при максимально быстром выдохе. В норме она должна быть на 200—300 мл меньше ЖЕЛ, исследованной в обычных условиях. Увеличение этой разницы указывает на ухудшение бронхиальной проходимости.

Проба Тиффно — Вотчала, по существу, представляет собой ту же ФЖЕЛ, но при этой пробе измеряется объем воздуха, выдыхаемого при предельно быстром и полном выдохе за 1, 2 и 3 сек. У здоровых лиц, не зани­мающихся спортом, за первую секунду выдыхается 80—85 % обычной ЖЕЛ, у спортсменов — обычно больше. Снижение этого процента свидетельствует о нару­шении бронхиальной проходимо­сти.

Такое исследование можно проводить с записью спирограммы путем присоединения к обыч­ному спирометру писчика и ки­мографа с быстро движущейся бумагой или используя специаль­ный спирометр. Это дает возмож­ность учитывать длительность форсированного выхода по секундам (рис. 44).

Спирометрическое исследование ФЖЕЛ позволяет установить различные типы кривых у здоровых и больных. На спирометриче­ской кривой определяется длительность форсированного выдоха до момента его замедления. В норме она составляет от 1,5 до 2 сек. Увеличение этого времени свидетельствует о нарушении бронхиаль­ной проходимости.

Мощность вдоха и выдоха представляет собой макси­мальную объемную скорость потока воздуха при вдохе и выдохе. Ее измеряют специальным прибором — пневмотахометром (рис. 45) и выражают в литрах в 1 сек. (л/сек). Для оценки этого показателя существует расчет должной величины (фактическая величина ЖЕЛ, умноженная на 1,24). Мощность вдоха равна мощности вы­доха или несколько превосходит ее и составляет у мужчин 5— 8 л/сек, у женщин — 4—6 л/сек.

Существенное значение для состояния вентиляции имеет сила дыхательной мускулатуры, особенно мускулатуры выдо­ха, так как на выдохе сопротивление воздухоносных путей намного превосходит его на вдохе. Это объясняется тем, что во время выдоха диаметр бронхов и бронхиол уменьшается.

Сила мускулатуры выдоха измеряется при натуживании. Чем большее давление создается при этом в ротовой полости, тем силь­нее мышцы выдоха. Давление в ротовой полости измеряется с по­мощью пневмотонометра, отводную трубку которого при этом бе­рут в рот (рис. 46). По степени понижения (при вдохе) и повыше­ния (при выдохе) уровня ртути в трубках пневмотонометра и определяется сила вдоха и выдоха. Силу мускулатуры выдоха вы­ражают в единицах давления, т. е. в миллиметрах ртутного столба (мм рт. ст.). В норме сила вдоха составляет в среднем 50— 60 мм рт. ст., сила выдоха — 80—150 мм рт. ст. Должная величина силы выдоха равна одной десятой должного основного обмена, рас­считанного по таблицам Гарриса — Бенедикта.

Л егочная вентиляция. Легочную вентиляцию, т. е. циркуляцию воздуха между внешней средой и альвеолярным воздухом, осуще­ствляет вся система внешнего дыхания.

К важнейшим величинам, характеризующим вентиляцию, при­надлежит минутный объем дыхания (МОД). При равно­мерном дыхании МОД представляет собой произведение глубины вдоха, т. е. дыхательного объема, на частоту дыхания в 1 мин. при условии, если глубина дыхания одинакова. В покое величина МОД колеблется от 4 до 10 л, при напряженной физической нагрузке она может возрастать в 20—25 раз и достигать 150—180 л и более. МОД увеличивается в прямой зависимости от мощности выполняе­мой работы, но только до определенного предела, после которого нарастание нагрузки уже не сопровождается увеличением МОД. Чем большая нагрузка соответствует пределу МОД, тем более со­вершенна функция внешнего дыхания. Возможность роста МОД при повышающейся нагрузке связана с величиной максимальной вентиляции легких данного лица. При равных величинах МОД эф­фективность вентиляции легких выше тогда, когда дыхание глубже и реже. При глубоком дыхании в альвеолы попадает большая часть дыхательного объема, чем при более поверхностном дыхании.

Средняя величина дыхательного объема определяется путем де­ления объема воздуха, вдыхаемого за определенное время, на чис­ло дыханий за этот же период. Эта величина колеблется у разных лиц от 300 до 900 мл. При положении стоя она больше, чем при по­ложении лежа. От глубины дыхания зависит величина так назы­ваемой альвеолярной вентиляции. Например, при объеме мертвого пространства 140 мл, дыхательном объеме 1000 мл и частоте дыха­ния 10 в 1 мин. МОД будет равен 1000 мл x 10 = 10 л, а вентиляция альвеол: (1000 мл — 140 мл) x 10 = 8,6 л. Если при таком же МОД (10 л) дыхательный объем будет меньше 500 мл, а частота дыхания больше 20 в 1 мин., то альвеолярная вентиляция составит только: (500 мл — 140 мл) x 20 = 7,2 л.

Таким образом, при оценке величины МОД необходимо учиты­вать глубину и частоту дыхания, ибо от этого зависит эффектив­ность вентиляции. Одна и та же величина МОД при глубоком и редком или при частом и поверхностном дыхании должна расцени­ваться различно. Частое и поверхностное дыхание не может под­держивать парциальное давление кислорода в альвеолярном воз­духе на должном уровне.

Соотношение вдоха и выдоха называется дыхательным циклом. У здоровых людей дыхательный цикл может иметь дыхательную паузу различной длительности после выдоха. Наличие или отсут­ствие дыхательной паузы и ее величина зависят от функционально­го состояния системы внешнего дыхания. Поэтому даже у одного и того же человека она может появляться и исчезать. Соотношение «вдох — выдох» составляет 1 к 1,1, т. е. вдох короче выдоха. Дли­тельность вдоха колеблется от 0,3 до 4,7 сек., длительность выдо­ха — от 1,2 до 6 сек.

Удлинение вдоха и укорочение выдоха улучшают условия газо­обмена; укорочение вдоха следует расценивать как неблагоприят­ный показатель. При мышечной работе увеличиваются объем и про­должительность вдоха и снижается продолжительность выдоха при увеличении его скорости. Соотношение «вдох — выдох» в этих ус­ловиях приближается к единице, что способствует лучшему исполь­зованию вентилируемого воздуха.

Расчет должной величины МОД в покое основан на том, что у здоровых лиц при дыхании из каждого литра вентилируемого воз­духа поглощается примерно 40 мл кислорода (так называемый коэффициент использования кислорода — КИО2). По­скольку уровень МОД находится в прямой зависимости от погло­щения кислорода, должная величина МОД (л) представляет собой частное от деления должной величины поглощения кислорода на 40. Должную величину поглощения кислорода находят по формуле:

должный основной обмен в ккал.

7,07

Исследование МОД в покое следует производить утром нато­щак, после 60 мин. отдыха. Наиболее простой метод его определе­ния — использование мундштука с вентилем и газового счетчика. При этом нос зажимается специальным зажимом (рис. 47). Нали­чие вентиля позволяет исследуемому вдыхать наружный воздух и выдыхать его в газовый счетчик. При физической нагрузке этот спо­соб неудобен, так как возрастающий объем вентиляции сопровож­дается значительным увеличением сопротивления дыханию со сто­роны прибора. Поэтому при нагрузке более рационально собирание выдыхаемого воздуха в резино­вый мешок (мешок Дугласа или резиновый метеобаллон) с после­дующим измерением его объема с помощью газового счетчика.

Определение МОД во время и после физической нагрузки поз­волило выявить несколько типов кривых, по которым можно су­дить о различном уровне функ­ционального состояния системы дыхания (рис. 48).

У величение легочной вентиля­ции под влиянием физической на­грузки может происходить как за счет учащения, так и за счет уг­лубления дыхания. У лиц с высо­ким уровнем функции внешнего дыхания увеличение МОД проис­ходит больше за счет углубления, у лиц с низким функциональным состоянием системы внешнего ды­хания — за счет учащения. В этом прослеживается аналогия с си­стемой кровообращения в отно­шении значения учащения пульса и увеличения ударного объема сердца при физической нагрузке.

Исчерпывающее представле­ние о частоте и глубине дыхания, а следовательно и МОД, дает спирографическое исследование (см. дальше).

Н аиболее полно отражает со­стояние вентиляции макси­мальная вентиляция лег­ких (МВЛ)—объем дыхания, который может быть достигнут при его максимальном усилении за счет как углубления каждого вдоха, так и увеличения частоты дыхания. На МВЛ влияют вели­чина ЖЕЛ, состояние бронхиаль­ной проходимости и сила дыха­тельной мускулатуры. В то время как каждый из этих показателей отражает какую-то отдельную сторону состояния вентиляции, МВЛ характеризует ее всесторонне.

Особое значение МВЛ состоит в том, что по ней можно судить о функциональных способностях системы внешнего ды­хания, тогда как перечисленные выше величины дают представле­ние лишь о ее функциональных возможностях. Изуче­ние последних позволяет получить ответ на вопрос, какими резер­вами располагает организм, а изучение функциональных способнос­тей — узнать о том, насколько полно и эффективно используются эти резервы. В оценке состояния системы внешнего дыхания важ­но и то и другое. Дополняя друг друга, эти данные помогают харак­теризовать ее функциональное состояние с наибольшей полнотой. Должная величина МВЛ рассчитывается по следующей фор­муле:

фактическая ЖЕЛ

2 X 35

При определении МВЛ испытуемому предлагают максимально часто и глубоко дышать через мундштук и загубник в газовые часы в течение 15, 20 или 30 сек. с пересчетом на 1 мин. или в мешок Дугласа или в метеобаллон с последующим определением его объ­ема. Цифра МВЛ условна, поскольку дышать так более 30 сек. нельзя — происходит вымывание углекислоты из организма (гипокапния) и может наступить обморочное состояние.

Исследование проводится при положении обследуемого сидя, после небольшого предварительного отдыха (15—30 мин.), натощак или через 2—3 часа после еды. Через 10—15 мин. отдыха определе­ние повторяют и учитывают максимальную цифру. Сравнительные исследования желательно проводить в одно и то же время дня.

У спортсменов и физкультурников с улучшением функциональ­ного состояния отмечается увеличение МВЛ. Ее снижение свиде­тельствует об ухудшении функции системы внешнего дыхания.

При определении МВЛ важно учитывать соотношение глубины и частоты дыхания. Увеличение МВЛ при повторных определениях может происходить за счет учащения дыхания при той же или сни­женной глубине его, углубления дыхания при той же частоте или за счет одновременного углубления и учащения дыхания. Если глуби­на вдоха при первом исследовании была достаточно большой, уве­личение МВЛ происходит за счет учащения дыхания. Во всех дру­гих случаях МВЛ возрастает за счет углубления дыхания при той же или увеличивающейся его частоте. Увеличение МВЛ за счет учащения дыхания при снижении его глубины является неблаго­приятной реакцией.

Увеличение МВЛ после физической нагрузки свидетельствует о том, что степень нагрузки была невелика и выполнила роль размин­ки. Отсутствие изменений МВЛ после физической нагрузки гово­рит об умеренной ее интенсивности, а снижение МВЛ — о чрезмер­ности нагрузки, что вызывает утомление дыхательной мускула­туры.

Для регистрации объемных (ЖЕЛ и составляющие ее объемы) и объемноскоростных (форсированная ЖЕЛ, проба Тиффно — Вотчала, МОД, МВЛ) величин применяется метод спирографии (от лат. спиро — дышу, графия — запись). Используемый прибор спирограф представляет собой замкнутую систему (иссле­дуемый соединяется с ней мундштуком), в которой находится спи­рометр с движущимся колоколом (рис. 49). Объем воздуха под этим колоколом изменяется в точном соответствии с количеством вдыхаемого и выдыхаемого воздуха. Перемещения колокола при этом записываются на движущейся бумажной ленте. Полученная кривая называется спирограммой. По ней можно точно определить объем каждого вдоха и выдоха в отдельности, а следовательно, и объем дыхания за любой промежуток времени (рис. 50). Спирограмму следует отличать от пневмограммы, при которой записываются только движения грудной клетки при дыхании. Эта запись осуще­ствляется с помощью резиновой трубки, надетой на грудную клет­ку. Емкость трубки при вдохе и выдохе изменяется, что фиксирует­ся капсулой Марея на движущейся ленте кимографа (рис. 51). Пневмограмма, в отличие от спирограммы, не позволяет и зучать объем дыхания, а учитывает только его частоту и ритм.

Исследование диффузии

Для оценки второго этапа функции внешнего дыхания, представляющего собой газообмен между альвеолярным воздухом и кровью легочных капилляров, существенное значение имеет определение поглощенного кислорода и выделенного углекислого газа.

Поглощение кислоро­да может быть определено как при помощи газоанализа выдыхаемого воздуха, т. е. методом открытого типа, ко­гда исследуемый вдыхает наруж­ный воздух и выдыхает его в ме­шок Дугласа или метеобаллон, так и спирографически, т.е. в замкнутой системе.

Выделение углекисло­го газа определяется только газоаналитическим пу­тем: собирают за определенное время выдыхаемый воздух и оп­ределяют в нем с помощью спе­циального прибора содержание кислорода и углекислого газа. Разница в концентрации кислоро­да или углекислого газа во вды­хаемом и выдыхаемом воздухе с учетом объема выдыхаемого воз­духа позволяет рассчитать коли­чество поглощенного кислорода и выделенного углекислого газа. В атмосферном воздухе содержание кислорода и углекислого газа весьма постоянно: кислорода — 20,93%, углекислого газа 0,02— 0,03% (т. е. практически равно нулю).

О пределение содержания кислорода и углекислого газа в выды­хаемом воздухе благодаря современным серийно выпускаемым газоаналитическим приборам не представляет трудностей. Особую ценность в изучении функции внешнего дыхания имеют приборы, дающие возможность изучать поглощение кислорода и выделение углекислого газа непрерывно, т. е. в покое, во время нагрузки и в

процессе восстановления, — ПГИ -1 и др. (рис. 52). Газоаналитические приборы другого типа определяют содержание газа только во взятой пробе воздуха, т. е. одномоментно. Преимущество их состоит в небольших объеме и весе (несколько килограммов). Поэтому они могут использоваться в любых условиях: на стадионе, в спортивном зале и т. п. К таким приборам относятся анализатор кислорода ММГ-7 (рис. 53), анализатор углекислого газа ГУХ -1 (рис. 54) и др.

Спирограф и чески определяемое количество поглощенного кислорода соответствует разнице в величи­нах объема воздуха или газовой смеси, находящейся под колоколом спирографа в замкнутой системе, измеренных до и после исследо­вания за определенный промежуток времени. Это измерение произ­водится по спирограмме. Кроме того, спирограмма дает возмож­ность определить МОД, частоту и глубину дыхания и ряд других параметров, характеризующих функцию внешнего дыхания (рис. 55). Таким образом, спирографическое исследование позволя­ет глубоко и полно оценить оба этапа внешнего дыхания — вентиля­цию и газообмен.

Существуют спирографы различных конструкций, но принцип их устройства одинаков — это замкнутая система, обычно с воздухо­дувкой, облегчающей дыхание, с одной подвижной частью — спи­рометром, заполненным воздухом или кислородом и связанным с устройством для записи спирограммы. К этой системе подключается исследуемое лицо.

Наконец, существенное влияние на уровень газообмена на этапе «альвеолярный воздух — кровь легочных капилляров» оказывает состояние альвеолярно-капиллярной мембраны. Величина, опреде­ляющая проницаемость указанной мембраны для газов, характеризует диффузионную способность легких. Она выра­жается в мл газа, прошедшего через альвеолярно-капиллярную мембрану за 1 мин. при разнице парциальных давлений в 1 мм рт. ст. (мл/мм рт. ст/мин). Определение диффузионной способности легких производится с помощью вдыхания окиси углерода, т. е. угарного газа. Ничтожные концентрации окиси углерода, использу­емые для этого исследования (0,03%), безопасны для человека. Это определение методически сложно и проводится пока только в научно-исследовательских целях, однако постепенно начинает внед­ряться и в практическую работу врача.

При изучении газообмена можно определить еще один важный показатель — коэффициент использования кислоро­да (КИО2), показывающий количество кислорода, которое орга­низм поглощает из 1 л вентилируемого воздуха. Для получения этого коэффициента надо разделить количество кислорода (мл), поглощенного организмом в 1 мин., на МОД (л). Величина КИО2 колеблется от 35 до 45 мл. Она зависит от диффузионной способно­сти легочной мембраны и эффективности вентиляции, от совершен­ства координации между легочной вентиляцией и кровообращением. Повышение КИО2 свидетельствует о более экономном дыхании и служит показателем лучшего использования вентилируемого воз­духа.

В настоящее время широко используется определение максимального поглощения кислорода (МПК). Этот тест считают показателем общего объема аэробных процессов, которые могут совершаться в организме в единицу времени. Величина МПК зависит от различных факторов, но прежде всего от функционально­го состояния системы внешнего дыхания, состояния диффузионной способности легких и состояния легочного кровообращения. Это дает основание рассматривать этот тест в разделе, относящемся к функции внешнего дыхания, хотя среди факторов, определяющих величину МПК, огромное значение имеют гемодинамические показ атели, состояние кислородной емкости крови, активность фермент­ных систем, количество работающих мышц (оно должно при таком исследовании составлять не менее 2/3 всей мышечной массы тела), а также вся система регуляции. Таким образом, очевидно, что МПК представляет собой величину, характеризующую общую физиче­скую работоспособность человека.

Однако, как уже было сказано, не следует по одному, даже, ка­залось бы, очень информативному, тесту делать общее заключение. Такое заключение может быть дано только при комплексном обсле­довании спортсмена, ибо обобщающая, интегральная величина не позволяет оценить удельный вес отдельных определяющих ее ком­понентов. В связи с огромными компенсаторными возможностями организма не всегда можно судить по

в ысокой интегральной обоб­щающей величине об одина­ково высоком функциональ­ном состоянии всех систем, определяющих эту величи­ну. Это положение относит­ся не только к МПК, но и другим показателям такого типа. Поэтому не следует делать прямых выводов о том, что только при высоких цифрах МПК можно пока­зывать высокие спортивные результаты.

Прямой способ исследо­вания МПК сводится к вы­полнению обследуемым ра­боты с нарастающей мощ­ностью при одновременном определении величины пог­лощения кислорода. В ка­кой-то момент исследования, несмотря на нарастание мощности работы, цифра поглощения кислорода пере­станет увеличиваться. Эта цифра и представляет собой МПК. Она достигает 5,5— 6,5 л кислорода в 1 мин. при легочной вентиляции равной 180—220 л. Обычно такое исследование проводится в условиях, позволяющих до­зировать мощности работы (велоэргометрия). Можно ис­пользовать и другие виды нагрузки (степ-тест и др.).

П оскольку, как уже было отмечено, максимальные нагрузки для функциональной диагностики нецелесообразны (они небезразличны для организма обследуемого, особенно при повторных исследовани­ях), МПК определяют путем выполнения умеренной работы с со­ответствующим перерасчетом. При этом исходят из того, что между частотой пульса и величиной потребления кислорода во время рабо­ты имеется линейная зависимость и что МПК достигается при ча­стоте пульса равной 170—200 ударам в 1 мин.

Таким образом, определив величину поглощения кислорода во время работы при частоте пульса 140—160 ударов в 1 мин., можно по специальной номограмме рассчитать, какое МПК должно быть у данного лица. Такая номограмма разработана Астрандом (рис. 56).

Можно также определить МПК по PWC170. Для занимающихся скоростно-силовыми видами спорта используется формула: МПК = l,7 х PWC170 + 1240; для спортсменов, тренировка которых на­правлена на развитие выносливости, — МПК = 2,2 x PWC170 + 1070.

Исследование насыщения артериальной крови кислородом

О дин из важнейших компонентов функции системы внешнего дыхания — поддержание нормального уровня насыщения артериальной крови кислородом.

Исследование этой величины требовало обязательной пункции артерии для получения порции артериальной крови, в которой на специальном приборе (аппарат Ван-Слайка) определялись содер­жание кислорода и углекислого газа (в объемных процентах) и кис­лородная емкость крови. На основании этих данных рассчитыва­лось в процентах насыщение артериальной крови кислородом. Опас­ность артериальной пункции вследствие возможных осложнений (кровотечение, гематома) и необходимость повторных пункций артерии для изучения влияния тех или иных функциональных проб на насыщение артериальной крови кислородом делало это исследо­вание в спортивной медицине практически неосуществимым. Значе­ние же такого определения чрезвычайно велико.

Широкое изучение насыщения артериальной крови кислородом в спортивной медицине началось с тех пор, как появилась возмож­ность бескровно определять эту величину, используя метод оксигемометрии. Он основан на принципе колориметрии (от лат. колор — цвет, метрия — измерение). Прибор, определяющий эти изменения, называется оксигемометром (рис. 57), а если он снабжен устройством для непрерывной записи показаний, — окси-гемографом (рис. 58). Кривая, отражающая изменения насыщения, называется оксигемограммой. Прибор работает от электрической сети. Разработаны и портативные оксигемометры — ППО-1, рабо­тающие на полупроводниках. Благодаря тому, что для их работы не требуется электрической сети, они могут быть использованы в лю­бых условиях (рис. 59). Воспринимающая часть оксигемометра — датчик, состоящий из двух частей, — укрепляется на ушной ракови­не с двух сторон (рис. 60). Луч света с одной стороны датчика, про­ходя через ушную раковину, падает на фотоэлементы, находящиеся на другой части датчика. Эти фотоэлементы воспринимают тонкие изменения спектров, зависящие от степени оксигенации крови, про­текающей по капиллярам. Поскольку гемоглобин, насыщенный кислородом, — оксигемоглобин (96—98%)—имеет один состав цветового спектра, а ненасыщенный — восстановленный гемоглобин (2—4%) — другой состав, эта разница в спектрах преобразуется фотоэлементами датчика в электрический ток, изменения которого на специально градуированной шкале отражают изменения насы­щения артериальной крови кислородом.

О ксигемометрия не дает возможности определять исходное на­сыщение артериальной крови кислородом (в начале исследования необходимо установить на шкале оксигемометра цифру истинного насыщения). Поэтому она и считается методом исследования изме­нений насыщения артериальной крови кислородом. В настоящее время разрабатывается так называемый абсолютный оксигемометр, который позволит определять и исходное насыщение артериальной крови кислородом.

Поскольку у спортсменов и физкультурников степень насыщения артериальной крови кислородом в покое — величина весьма посто­янная, при их исследовании надо показания прибора устанавливать на 96—98%. Расхождение с истинным насыщением на 1—2% в ту или другую сторону не играет существенной роли. Все дальнейшие изменения насыщения прибор показывает достаточно точно.

Использование метода оксигемометрии очень перспективно. Данный метод позволяет наблюдать за изменениями насыщения артериальной крови кислородом при различных воздействиях. Для организма важно сохранить этот важнейший параметр на высоком уровне, так как он обусловливает возможности тканевого дыхания, т. е. состояние окислительных процессов.

Большую ценность представляет изучение насыщения артериаль­ной крови кислородом при физической нагрузке. При недостаточно высоком функциональном состоянии организма, в частности систе­мы внешнего дыхания, снижение этого показателя происходит уже при сравнительно небольшой физической нагрузке. Это объясняется главным образом несовершенством регуляции дыхания во время физической нагрузки: оно становится частым, поверхностным, т. е. менее эффективным, появляются задержки дыхания, обусловлен­ные плохой согласованностью рабочих движений и дыхания.

Оценка изменений оксигемограммы под влиянием физической нагрузки должна производиться обязательно с учетом объема венти­ляции. Например, для поддержания насыщения крови кислородом на уровне 98% при физической нагрузке одному спортсмену требу­ется минутный объем дыхания 40 л, другому — 60 л. Очевидно, что в первом случае функция внешнего дыхания, а также кровообраще­ния более экономична, более совершенна, чем во втором. Различия в состоянии насыщения во время выполнения одинаковой физиче­ской нагрузки двумя спортсменами с разным уровнем тренирован­ности отчетливо видны на рис. 61. Верхняя оксигемограмма принад­лежит хорошо подготовленному велосипедисту. Заметное снижение уровня насыщения происходит у него при задержке дыхания во время рывка. У плохо подготовленного спортсмена (нижняя кривая) снижение отмечается уже при нагрузке средней интенсивности, а во время задержки дыхания при рывке наблюдается значительное па­дение уровня насыщения. Примечательно, что такие существенные различия в реакции организма на одну и ту же нагрузку у разных людей определялись только оксигемометрически, ибо оба спортсме­на выполняли эти задачи внешне одинаково.

Д ля характеристики функционального состояния организма очень важно оценить устойчивость его к снижению насыщения кис­лорода в артериальной крови. Раньше такую оценку производили с помощью определения времени максимальной задержки дыхания.

Однако эта проба имеет существенные недостатки: максимальная задержка дыхания небезразлична для обследуемого, длительность ее во многом зависит от его воли, а главное, оценка устойчивости организма к недостатку кислорода приблизительна, так как степень снижения насыщения во время задержки дыхания остается неизве­стной.

Эти затруднения полностью преодолеваются благодаря исполь­зованию оксигемометрии в сочетании с задержкой дыхания. В та­ком исследовании устойчивость к снижению насыщения оценивает­ся точно и объективно. Необходимость в максимальной задержке дыхания отпадает,

так как в основе оценки результатов пробы ле­жит либо анализ степени снижения насыщения при дозированной (не максимальной) задержке дыхания, либо время задержки дыхания, необходимое для сни­жения степени на определен­ный, тоже не максимальный процент. С повышением уров­ня тренированности уменьша­ется степень снижения насы­щения при определенном вре­мени задержки или увеличи­вается время задержки дыха­ния, необходимой для сниже­ния насыщения на определен­ный процент.

При задержке дыхания и после его возобновления изменение насыщения крови кислородом подчиняется определенным физиологическим закономерностям. Это находит свое отражение в том, что оксигемограмма при задержке дыхания всегда состоит из определенных фаз, обозначаемых начальными буквами русского алфавита - фазы АБ, БВ, В1В2, В2Г, ГД (рис. 62).

Начало задержки дыхания обозначают точкой А. В течение оп­ределенного времени после начала задержки уровень насыщения остается неизменным. В точке Б начинается падение насыщения. Таким образом, фаза АБ характеризуется отсутствием изменений насыщения крови кислородом. Длительность этой фазы зависит главным образом от двух факторов: а) от запаса кис­лорода в легких в начале задержки дыхания. Он прямо пропорцио­нален объему воздуха в легких. Чем больше этот объем, тем доль­ше держится такой уровень парциального давления кислорода в альвеолярном воздухе, который может полноценно обеспечивать насыщение артериальной крови кислородом; б) от интенсивности окислительных процессов в организме исследуемого лица, которые определяют темп снижения парциального давления кислорода в альвеолярном воздухе. Чем выше интенсивность окислительных процессов в тканях, тем больше расход кислорода» тем более веноз­ной приходит кровь в легкие и тем короче фаза АБ.

Изучение интенсивности окислительных процессов имеет суще­ственное значение в оценке функционального состояния организма, в частности в изучении процесса восстановления после физической нагрузки. Для того чтобы оценка была точной, оксигемометрическую пробу с задержкой дыхания проводят всегда при одном и том же объеме воздуха в легких у данного лица. Для этого перед нача­лом задержки дыхания обследуемый делает глубокий выдох. Сле­довательно, в легких сохраняется только остаточный объем, доволь­но постоянный для данного лица в одних и тех же условиях. Оксигемометрический метод позволяет определять интенсивность окислительных процессов, т. е уровень основного обмена, только относительно (его увеличение или уменьшение).

Для получения абсолютных величин интенсивности окислитель­ных процессов необходимо определять газоаналитически поглоще­ние кислорода, выделение углекислого газа, рассчитывать дыха­тельный коэффициент.

После момента, обозначенного на оксигемограмме буквой Б, на­чинается падение уровня насыщения. Это свидетельствует о том, что парциальное давление кислорода в альвеолярном воздухе сни­зилось до таких величин, которые уже не могут обеспечить исходное насыщение артериальной крови кислородом. Буквой b1 обозначают прекращение задержки дыхания.

Как видно из рис. 62, восстановление насыщения крови кислоро­дом при возобновлении дыхания происходит не сразу. После перво­го вдоха (точка B1) уровень насыщения продолжает в течение неко­торого времени снижаться до точки В2. Это объясняется тем, что резкое увеличение парциального давления кислорода в альвеоляр­ном воздухе, обусловленное первым вдохом, хотя и вызывает моментальный подъем насыщения крови кислородом, однако это про­исходит в капиллярах легких. Для того чтобы кровь, обогащенная кислородом, дошла до уха, где установлен датчик прибора, требу­ется время. Оно обратно пропорционально скорости кровотока по сосудам малого (от капилляров легких до сердца) и большого (от сердца до уха) крута кровообращения. Чем больше скорость кровот ока, тем меньше времени проходит от первого вдоха после задерж­ки (точка b1) до начала восстановления насыщения (точка В2). Таким образом, длительность фазы B1B2 представляет собой ско­рость кровотока. Хотя при данной пробе измеряется не скорость, а время кровотока на участке «легкие — ухо», принято говорить о скорости кровотока равной стольким-то секундам. Скорость крово­тока, определенная оксигемометрически, у здоровых лиц в покое равна 4—6 сек. С повышением функционального состояния организ­ма спортсмена, наблюдаемым при систематической спортивной тре­нировке, скорость кровотока несколько замедляется.

Скорость кровотока принадлежит к числу важнейших показате­лей функции кровообращения. Однако широкое определение ее в клинической и в спортивной медицине стало возможным, по существу, только с появлением метода оксигемометрии. Дело в том, что для определения скорости кровотока в вену вводилось какое-либо вещество. По степени изменения цвета лица или по появлению каш­ля, вызванных действием этого вещества, судили о скорости дви­жения крови по кровяному руслу.

В настоящее время Оксигемометрическое определение скорости кровотока прочно вошло в практику как клинической, так и спор­тивной медицины (рис. 63).

В процессе восстановления насыщения до исходного уровня раз­личают две фазы: фазу быстрого восстановления (В2Г) и фазу мед­ленного восстановления (ГД). Разница в темпе восстановления насыщения в течение этих двух фаз у разных лиц неодинакова.

В оценке функционального состояния организма спортсменов особенно существенным является изучение динамики восстановле­ния насыщения крови кислородом при пробе с задержкой дыхания, проводимой после тренировки. Длительность восстановления (фаза В2Д), не превышающая 1—2 мин., характерна для хорошо подготов­ленных спортсменов. При перетренированности, переутомлении она затягивается до 4—10 мин. Увеличение фазы В2Д объясняется сни­жением эффективности вентиляции, нарушением координации кро­вотока в легких и вентиляции соответствующих альвеол, т. е. отри­цательными изменениями в регуляции важнейших вегетативных функций кровообращения и дыхания.

Всесторонняя и глубокая оценка функции внешнего дыхания является необходимой составной частью в характеристике функци­онального состояния организма в целом. Без такой оценки опреде­ление функционального состояния организма спортсмена в настоя­щее время затруднительно.