Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika1.doc
Скачиваний:
12
Добавлен:
26.09.2019
Размер:
1.4 Mб
Скачать

24)Дисперсия света

Дисперсией света называется совокупность явлений, обусловленных зависимостью абсолютного показателя преломления вещества от длины световой волны. Первые экспериментальные исследования этой зависимости принадлежат Ньютону, который произвел (1672 г.) знаменитый опыт с разложением света на цвета (в спектр) при преломлении в призме. В прозрачных бесцветных средах показатель преломления n растет с уменьшением длины волны λ0, где λ0 – длина волны в вакууме. Величина , называемая дисперсией вещества, так же увеличивается по модулю с уменьшением λ0 . Такой характер дисперсии называют нормальным (рис. 1 участки 1-2 и 3-4).

Возможен и обратный ход дисперсии, когда показатель преломления уменьшается с уменьшением длины волны. Такой вид дисперсии называется аномальной (рис. 1 участок 2-3). Было установлено, что аномальная дисперсия тесно связана с поглощением света. Все вещества, для которых наблюдается аномальная дисперсия, сильно поглощают свет в этой области частот. На рис.1 штриховая линия изображает кривую поглощения. Дисперсия света может быть объяснена на основе электромагнитной теории и электронной теории вещества. Для этого нужно рассмотреть процесс взаимодействия света с веществом. Движение электронов в атоме подчиняется законам квантовой механики. В частности, понятие траектории электрона в атоме теряет всякий смысл. Однако, как показал Лоренц, для качественного понимания многих оптических явлений достаточно ограничиться гипотезой о существовании внутри атомов электронов, связанных квазиупруго. Будучи выведенными из положения равновесия, такие электроны начнут колебаться, постепенно теряя энергию колебания на излучение электромагнитных волн. В результате колебания будут затухающими. Затухание можно учесть, введя «силу трения излучения», пропорциональную скорости. При прохождении через вещество электромагнитной волны каждый электрон оказывается под воздействием лоренцевой силы

При прохождении через вещество электромагнитной волны каждый электрон находиться под действвием силы. в итоге придём к следующей формуле

25) Вавилов высказал правильное предположение, что источником излучения служат быстрые электроны,создаваемые у-лучами. Это явление получило название эффекта Вавилова — Черенкова. мерно, не излучает электромагнитных волн (см. § 109). Однако, как показали Тамм и Франк, это справедливо лишь в том случае, если скорость v заряженной частицы не превышает фазовую скорость с/n электромагнитных волн в той среде, в которой движется частица. При условии, что v> c!n, даже двигаясь равномерно, частица излучает электромагнитные волны. В действительности частица теряет энергию на излучение, вследствие чего движется с отрицательным ускорением. Но это ускорение является не причиной как в случае v<c/n), а следствием излучения. Если бы потеря энергии за счет излучения восполнялась каким-либо способом, то частица, движущаяся равномерно со скоростью v>c/n, все равно была бы источником излучения. Эффект Вавилова — Черенкова наблю.дался экспериментально для электронов, протонов и мезонов при движении их в жидких и твердых средах. В излучении Вавилова — Черенкова преобладают короткие волны, поэтому оно имеет голубую окраску. Наиболее характерным свойством этого излучения является то, что оно испускается не по всем направлениям, а лишь вдоль образующих конуса, ось которого совпадает с направлением скорости частицы Угол между направлениями распространения излучения и вектором скорости частицы определяется соотношением Эффект Вавилова — Черенкова находит широкое применение в экспериментальной технике.

26) Теплово́е излуче́ние — электромагнитное излучение с непрерывным спектром, испускаемое нагретыми телами за счёт их тепловой энергии.Характеристики:1)Энергетическая светимость тела -- физическая величина, являющаяся функцией температуры и численно равная энергии, испускаемой телом в единицу времени с единицы площади поверхности по всем направлениям и по всему спектру частот.  ;      Дж/с·м²=Вт/м²

Спектральная плотность энергетической светимости

Спектральная плотность энергетической светимости — функция частоты и температуры характеризующая распределение энергии излучения по всему спектру частот (или длин волн).

Поглощающая способность тела

Поглощающая способность тела — — функция частоты и температуры, показывающая, какая часть энергии электромагнитного излучения, падающего на тело, поглощается телом в области частот dw вблизи w. где — поток энергии, поглощающейся телом. — поток энергии, падающий на тело в области dw вблизи w. Отражающая способность тела — — функция частоты и температуры, показывающая какая часть энергии электромагнитного излучения, падающего на тело, отражается от него в области частот dw вблизи w. где   — поток энергии, отражающейся от тела. — поток энергии, падающий на тело в области dw вблизи w. Абсолютно черное тело — это физическая абстракция (модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение, — для абсолютно черного тела. Серое тело — это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры — для серого тела. Объемная плотность энергии излучения — — функция температуры, численно равная энергии электромагнитного излучения в единицу объема по всему спектру частот .Спектральная плотность энергии — — функция частоты и температуры, связанная с объемной плотностью излучения формулой: Основные свойства теплового излучения;Тепловое излучение происходит по всему спектру частот от нуля до бесконечности;Интенсивность теплового излучения неравномерна по частотам и имеет явно выраженный максимум при определенной частоте;C ростом температуры общая интенсивность теплового излучения возрастает;C ростом температуры максимум излучения смещается в сторону больших частот (меньших длин волн);Тепловое излучение характерно для тел независимо от их агрегатного состояния;Отличительным свойством теплового излучения является равновесный характер излучения. Это значит что если мы поместим тело в термоизолированный сосуд, то количество поглощаемой энергии всегда будет равно количеству испускаемой энергии.

27) Спектральные лучеиспускательная и поглощательная способности любого тела связаны между собой законом Кирхгофа: отношение спектральных лучеиспускательной способности к поглощательной способности для любых тел при данных температуре и длине волны одинаково и не зависит от природы этих тел. Это отношение есть универсальная функция температуры и длины волны и является спектральной лучеиспускательной способностью (спектральной энергетическом светимостью) абсолютно черного тела при данных температуре и длине волны: rT/T=r0T. Для тела, полностью поглощающего излучения всех частот,   . Такое тело называется абсолютно черным (это идеализация).Другая трактовка закона Кирхгофа : Отношение лучеиспускательной к поглощательной способности не зависит от природы тела, оно является для всех тел одной и той же (универсальной) функцией частоты и температуры.

28) Таким образом, универсальная функция Кирхгофа есть не что иное, как спектральная плотность энергетической светимости черного тела. Энергетическая светимость АЧТ зависит только от температуры, т.е. Энергетическая светимость АЧТ пропорциональна четвертой степени его термодинамической температуры:

 , где σ-- постоянная Больцмана. Этот

закон – закон Стефана-Больцмана. Задача отыскания вида функции Кирхгофа (выяснения спектрального состава излучения ЧТ): Эксперименты оказали, что зависимость при разных температурах ЧТ имеет вид см. рис.. При разный частотах а в области больших частот

(правые ветви кривых вдали от максимумов), зависимость от частоты имеет вид где a1 -- постоянная величина. Существование на каждой кривой более или менее ярко выраженного максимума свидетельствует о том, что энергия излучения ЧТ распределена по спектру неравномерно: черное тело почти не излучает энергии в области очень малых и очень больших частот. По мере повышения температуры тела максимум смещается в

область больших частот. Площадь, ограниченная кривой и осью абсцисс, пропорциональна энергетической светимости ЧТ. Поэтому в соответствии с законом Стефана Больцмана она возрастает пропорциональноT4 . Серое тело — это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры — для серого тела.

29) Формула Релея-Джинса. Попытка теоретического вывода зависимости универсальной функции Кирхгофа. В данном случае был применен закон равномерного распределения энергии по степеням свободы. Формула Релея-Джинса для спектральной плотности энергетической светимости имеет ви

 , где – средняя энергия

осциллятора с собственной частотой ν.

Для осциллятора, совершающего колебания, средние значения кинетической и потенциальной энергий одинаковы, поэтому средняя степень каждой колебательной степени свободы

 согласуется с

экспериментальными данными только в области достаточно малых частот и больших температур .В области больших частот она резко с ними расходится. Если попытаться получить закон Стефана-Больцмана, то получается абсурд, т.к. вычисленная с использованием ф-лы Р.-Д. энергетическая светимость черного тела

Плотность энергии в равновесной системе бесконечна! в то время как по закону Стеф.-Больц. Re пропорциональна четвертой степени температуры .В этом и заключается затруднение классической теории излучения.

30) Согласно квантово теории Планка, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями -- квантами, причем энергия ванта пропорциональна частоте колебания. постоянная Планка. Т.к. излучение испускается порциями, то энергия осциллятора (стоячей волны) εможет принимать лишь определенные дискретные значения, кратные целому числу эл-тарн порций энергии  Ф-ла Планка (нахождение универсальной

функции Кирхгофа):

спектральные плотности энергетической светимости ЧТ, X — длина волны, (О — круговая частота, с - скорость света в вакууме, к -постоянная Больцмана, Т - термодинамическая температура, h - постоянная Планка, % — постоянная Планка, дел. на 2ж =

1.05 • 1(Г34 Дж ■ с . Следствие: если

Планка следует ф-ла Релея-Джинса:  . В области больших частот и единицей в знаметеле.

 тогда получим ф-лу   эта ф-ла совпадает с ф­лой , причем

Энергия кванта E, излучаемая или поглощаемая гармоническим осциллятором частоты v, формула Планка :где h – универсальная постоянная, получившая название постоянной Планка:= 6,626176(36)×10-27эрг×с

Формула Планка — выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком. Для плотности энергии излучения  :

Формула Планка была получена после того, как стало ясно, что формула Рэлея — Джинса удовлетворительно описывает излучение только в области длинных волн.

31) Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком. Законы внешнего фотоэффекта Закон Столетова: при неизменном спектральном составе электромагнитных излучений, падающих на фотокатод, фототок насыщения пропорционален энергетической освещенности катода (иначе: число фотоэлектронов, выбиваемых из катода за 1 с, прямо пропорционально интенсивности излучения):  и  Максимальная начальная скорость фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой. Для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота ν0 света (зависящая от химической природы вещества и состояния поверхности), ниже которой фотоэффект невозможен.

Явление фотоэффекта получило широкое практическое применение. Приборы, в основе принципа действия которых лежит фотоэффект, называются фотоэлементами. Фотоэлементы, использующие внешний фотоэффект, преобразуют энергию излучения в электрическую лишь частично. Так как эффективность преобразования небольшая, то в качестве источников электроэнергии фотоэлементы не используют, но зато применяют их в различных схемах автоматики для управления электрическими цепями с помощью световых пучков.

32)Фотон- элементарная частица, квант электромагнитного излучения либо Фотон - материальная, электрически нейтральная частица, квант электромагнитного поля (переносчик электромагнитного взаимодействия). Основные свойства фотона 1. Является частицей электромагнитного поля. 2. Движется со скоростью света. 3. Существует только в движении. 4. Остановить фотон нельзя: он либо движется со скоростьюравной скорости света, либо не существует; следовательно, масса покоя фотона равна нулю. Энергия фотона: .

Согласно теории относительности энергия всегда может быть вычислена как  , Отсюда  - масса фотона

Импульс фотона  . Импульс фотона направлен по световому пучку. Собственная скорость фотона бесконечна. Массу покоя фотона считают равной нулю, основываясь на эксперименте и теоретических обоснованиях, описанных выше. Поэтому скорость фотона равна скорости света. скорость света = 3×10^8 м/с.

33) Давление света

В 1873 г. Дж. Максвелл, исходя из представлений об электромагнитной природе света, пришел к выводу: свет должен оказывать давление на препятствие (благодаря действию силы Лоренца; на рисунке v - направление скорости электронов под действием электрической составляющей электромагнитной волны).

Квантовая теория света объясняет световое давление как результат передачи фотонами своего импульса атомам или молекулам вещества. Пусть на поверхность абсолютно черного тела площадью S перпендикулярно к ней ежесекундно падает N фотонов: . Каждый фотон обладает импульсом . Полный импульс, получаемый поверхностью тела, равен . Световое давление:

При падении света на зеркальную поверхность удар фотона считают абсолютно упругим, поэтому изменение импульса и давление в 2 раза больше, чем при падении на черную поверхность (удар неупругий).

Это давление оказалось ~4.10-6 Па. Предсказание Дж. Максвеллом существования светового давления было экспериментально подтверждено П. Н. Лебедевым, который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Теория и эксперимент совпали.

Опыты П. Н. Лебедева — экспериментальное доказательство факта: фотоны обладают импульсом

Опыты лебедева 1).  В его опытах в вакуумированном сосуде на тонкой серебряной нити подвешивались крутильные весы, к коромыслам которых были прикреплены тонкие диски из слюды и различных металлов. Главной сложностью было выделить световое давление на фоне радиометрических и конвективных сил (сил, обусловленных разностью температуры окружающего газа с освещённой и неосвещённой стороны). Кроме того поскольку в то время не были разработаны вакуумные насосы, отличные от простых механических, Лебедев не имел возможности проводить свои опыты в условиях даже среднего, по современной классификации, вакуума. Путем попеременного облучения разных сторон крылышек Лебедев нивелировал радиометрические силы и получил удовлетворительное (±20 %) совпадение с теорией Максвелла. Позднее, в 1907—1910 гг. Лебедев провёл более точные опыты по изучению давления света в газах и также получил приемлемое согласие с теорией[1].

34) Эффект Комптона состоит в увеличении длины волны коротковолнового (рентгеновского и гамма-) излучения, происходящем при его рассеянии легкими атомами (вернее, электронами, входящими в состав легких атомов). Теория эффекта Комптнона. Эффект Комптона можно объяснить, рассматривая его как процесс упругого столкновения рентгеновских фотонов с веществом. При этом необходимо использовать тот факт, что в опытах Комптона все легкие атомы ведут себя одинаково. Это позволяет сделать предположение, что процесс рассеяния сводится к упругому столкновению фотона с электронами атома. Поскольку в легких атомах связь электрона с ядром слаба, то в первом приближении можно рассматривать рассеяние фотонов на практически свободных электронах. При взаимодействии фотона и электрона должны выполняться законы сохранения импульса и энергии

35) Корпускуля́рно-волново́й дуали́зм — принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Такие явления, как интерференция и дифракция света, убедительно свидетельствуют о волновой природе света. В то же время закономерности равновесного теплового излучения, фотоэффекта и эффекта Комптона можно успешно истолковать с классической точки зрения только на основе представлений о свете, как о потоке дискретных фотонов. Однако волновой и корпускулярный способы описания света не противоречат, а взаимно дополняют друг друга, так как свет одновременно обладает и волновыми и корпускулярными свойствами.

Волновые свойства света играют определяющую роль в закономерностях его интерференции, дифракции, поляризации, а корпускулярные — в процессах взаимодействия света с веществом. Чем больше длина волны света, тем меньше импульс и энергия фотона и тем труднее обнаружить корпускулярные свойства света. Например, внешний фотоэффект происходит только при энергиях фотонов, больших или равных работе выхода электрона из вещества. Чем меньше длина волны электромагнитного излучения, тем больше энергия и импульс фотонов и тем труднее обнаружить волновые свойства этого излучения. Например, рентгеновское излучение дифрагирует только на очень «тонкой» дифракционной решетке — кристаллической решетке твердого тела.

36) Спектральные серии водорода — набор спектральных серий, составляющих спектр атома водорода. Спектральная серия — набор спектральных линий, которые получаются при переходе электронов с любого из вышележащих термов на один нижележащий, являющийся основным для данной серии. Точно также в поглощении при переходе электронов с данного уровня на любой другой образуется спектральная серия. Поскольку водород — наиболее простой атом, его спектральные серии наиболее изучены. Они хорошо подчиняются формуле Ридберга:

,

где R = 109 677 см−1 — постоянная Ридберга для водорода,   — основной уровень серии. Спектральные линии возникающие при переходах на основной энергетический уровень называются резонансными, все остальные — субординатными.

Серия Лаймана - Все линии серии находятся в ультрафиолетовом диапазоне. Серия соответствует формуле Ридберга при n' = 1 и n = 2, 3, 4,… Линия Lα = 1216 Å является резонансной линией водорода. Граница серии — 911,8 Å.Серия Бальмера. Первые четыре линии серии находятся в видимом диапазоне. Серия соответствует формуле Ридберга при n' = 2 и n = 3, 4, 5,… Линия Hα = 6565 Å. Граница серии — 3647 Å.Серия ПашенаВсе линии серии находятся в инфракрасном диапазоне. Серия соответствует формуле Ридберга при n' = 3 и n = 4, 5, 6,… Линия Pα = 18756 Å. Граница серии — 8206 Å.Серия Брэккета, Все линии серии находятся в далёком инфракрасном диапазоне. Серия соответствует формуле Ридберга при n' = 4 и n = 5, 6, 7,… Линия Bα = 40522 Å. Граница серии — 14588 Å.Серия Пфунда Все линии серии находятся в далёком инфракрасном диапазоне. Серия соответствует формуле Ридберга при n' = 5 и n = 6, 7, 8,… Линия Pfα = 74598 Å. Граница серии — 22794 Å.

Серия Хэмпфри

Открыта К. Д. Хэмпфри в 1953 году. Все линии серии находятся в далёком инфракрасном диапазоне. Серия соответствует формуле Ридберга при n' = 6 и n = 7, 8, 9,… Основная линия 123718 Å. Граница серии — 32823 Å.

37) Новую модель строения атома Резерфорд предложил в 1911 году как вывод из эксперимента по рассеянию альфа-частиц на золотой фольге, проведённого под его руководством. При этом рассеянии неожиданно большое количество альфа-частиц рассеивалось на большие углы, что свидетельствовало о том, что центр рассеяния имеет небольшие размеры и в нём сосредоточен значительный электрический заряд. Расчёты Резерфорда показали, что рассеивающий центр, заряженный положительно или отрицательно, должен быть по крайней мере в 3000 раз меньше размера атома, который в то время уже был известен и оценивался как примерно 10-10 м. Поскольку в то время электроны уже были известны, а их масса и заряд определены, то рассеивающий центр, который позже назвали ядром, должен был иметь противоположный электронам заряд. Резерфорд не связал величину заряда с атомным номером. Этот вывод был сделан позже. А сам Резерфорд предположил, что заряд пропорционален атомной массе. Планетарная модель атома, или модель Резерфорда, - историческая модель строения атома, которую предложил Эрнест Резерфорд в результате эксперимента с рассеянием альфа-частиц. По этой модели атом состоит из небольшого положительно заряженного ядра, в котором сосредоточена почти вся масса атома, вокруг которого движутся электроны, - подобно тому, как планеты движутся вокруг Солнца. Бор объяснил устойчивость планетарной модели атома и одновременно эти спектральные данные с позиций квантовой теории, сформулировав ряд постулатов, накладывающих на модель атома квантовые ограничения. Согласно постулатам Бора, электрон может вращаться вокруг ядра лишь по некоторым дозволенным ("стационарным") орбитам, находясь на которых, он не излучает энергию. Ближайшая к ядру орбита соответствует "нормальному" (наиболее устойчивому) состоянию атома. При сообщении атому кванта энергии электрон переходит на более удалённую орбиту. Обратный переход из "возбуждённого" в "нормальное" состояние сопровождается испусканием кванта излучения. Как показал расчёт на основании спектральных данных, радиусы электронных орбит относятся как 12 : 22 : 32 : … : n2. Иначе говоря, момент количества движения вращающегося электрона пропорционален целочисленному главному квантовому числу (номеру орбиты).

38) Постулаты Бора — основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов (формула Бальмера-Ридберга) и квантового характера испускания и поглощения света. Бор исходил из планетарной модели атома Резерфорда.

1)Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

2 )Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам, для которых момент импульсаквантуется , где   — натуральные числа, а   — постоянная Планка. Пребывание электрона на орбите определяет энергию этих стационарных состояний.

3)При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии  , где   — энергетические уровни, между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний — поглощается.

Н. Бора определяет правила квантования стационарных орбит. Бор предположил, что момент импульса электрона, вращающегося на стационарной орбите в атоме водорода, может принимать только дискретные значения, кратные постоянной Планка. Для круговых орбит правило квантования Бора записывается в виде: 

где me – масса электрона, υ – его орбитальная скорость, rn – радиус n-ой стационарной орбиты. Целое число n называется квантовым числом.

Правило квантования орбит по Бору получило наглядную интерпретацию в теории де Бройля, высказавшего гипотезу о наличии у электрона волновых свойств (1924 г.). Согласно де Бройлю электрону (и любому другому микрообъекту) соответствует волновой процесс с длиной волны 

где p – импульс электрона.

В применении к орбитальному движению электрона на стационарной круговой орбите в атоме водорода из правила квантования Бора вытекает соотношение 

nλ = 2πrn.

Это означает, что длина волны де Бройля целое число раз укладывается на длине стационарной круговой орбиты электрона, то есть стационарная орбита соответствует круговой стоячей волне де Бройля на длине орбиты.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]