Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kb-texts.doc
Скачиваний:
2
Добавлен:
17.07.2019
Размер:
1.69 Mб
Скачать

In the illustration above, you can see how the disk is divided into tracks (brown) and sectors (yellow).

The read/write heads ("writing" is saving new information to the storage media) do not touch the media when the heads are traveling between tracks. There is normally some type of mechanism that you can set to protect a disk or cartridge from being written to. For example, electronic optics check for the presence of an opening in the lower corner of a 3.5-inch diskette (or a notch in the side of a 5.25-inch diskette) to see if the user wants to prevent data from being written to it.

Magnetic: Zip

Over the years, magnetic technology has improved greatly. Because of the immense popularity and low cost of floppy disks, higher-capacity removable storage has not been able to completely replace the floppy drive. But there are a number of alternatives that have become very popular in their own right. One such example is the Zip from Iomega.

The Zip drive comes in several configurations, including SCSI, USB, parallel port and internal ATAPI.

The main thing that separates a Zip disk from a floppy disk is the magnetic coating used. On a Zip disk, the coating is of a much higher quality. The higher-quality coating means that the read/write head on a Zip disk can be significantly smaller than on a floppy disk (by a factor of 10 or so). The smaller head, in conjunction with a head-positioning mechanism that is similar to the one used in a hard disk, means that a Zip drive can pack thousands of tracks per inch on the disk surface. Zip drives also use a variable number of sectors per track to make the best use of disk space. All of these features combine to create a floppy disk that holds a huge amount of data -- up to 750 MB at the moment.

Magnetic: Cartridges

Another method of using magnetic technology for removable storage is essentially taking a hard disk and putting it in a self-contained case. One of the more successful products using this method is the Iomega Jaz. Each Jaz cartridge is basically a hard disk, with several platters, contained in a hard, plastic case. The cartridge contains neither the heads nor the motor for spinning the disk; both of these items are in the drive unit.

The current Jaz drive uses 2-GB cartridges, but also accepts the 1-GB cartridge used by the original Jaz.

Magnetic: Portable Drives

Completely external, portable hard drives are quickly becoming popular, due in a great part to USB technology. These units, like the ones inside a typical PC, have the drive mechanism and the media all in one sealed case. The drive connects to the PC via USB cable and, after the driver software is installed the first time, is automatically listed by Windows as an available drive.

This 20-GB Pockey Drive fits in the palm of your hand.

Another type of portable hard drive is called a microdrive. These tiny hard drives are built into PCMCIA cards that can be plugged into any device with a PCMCIA slot, such as a laptop computer.

This microdrive holds 340 MB and is about the size of a matchbox.

You can read more about magnetic storage in How Hard Disks Work and How Tape Recorders Work. To learn about optical storage technology, check out the next page.

Optical Storage

The optical storage device that most of us are familiar with is the compact disc (CD). A CD can store huge amounts of digital information (783 MB) on a very small surface that is incredibly inexpensive to manufacture. The design that makes this possible is a simple one: The CD surface is a mirror covered with billions of tiny bumps that are arranged in a long, tightly wound spiral. The CD player reads the bumps with a precise laser and interprets the information as bits of data.

The spiral of bumps on a CD starts in the center. CD tracks are so small that they have to be measured in microns (millionths of a meter). The CD track is approximately 0.5 microns wide, with 1.6 microns separating one track from the next. The elongated bumps are each 0.5 microns wide, a minimum of 0.83 microns long and 125 nanometers (billionths of a meter) high.

Most of the mass of a CD is an injection-molded piece of clear polycarbonate plastic that is about 1.2 millimeters thick. During manufacturing, this plastic is impressed with the microscopic bumps that make up the long, spiral track. A thin, reflective aluminum layer is then coated on the top of the disc, covering the bumps. The tricky part of CD technology is reading all the tiny bumps correctly, in the right order and at the right speed. To do all of this, the CD player has to be exceptionally precise when it focuses the laser on the track of bumps.

When you play a CD, the laser beam passes through the CD's polycarbonate layer, reflects off the aluminum layer and hits an optoelectronic device that detects changes in light. The bumps reflect light differently than the flat parts of the aluminum layer, which are called lands. The optoelectronic sensor detects these changes in reflectivity, and the electronics in the CD-player drive interpret the changes as data bits.

The basic parts of a compact-disc player

Optical: CD-R/CD-RW

That is how a normal CD works, which is great for prepackaged software, but no help at all as removable storage for your own files. That's where CD-recordable (CD-R) and CD-rewritable (CD-RW) come in.

CD-R works by replacing the aluminum layer in a normal CD with an organic dye compound. This compound is normally reflective, but when the laser focuses on a spot and heats it to a certain temperature, it "burns" the dye, causing it to darken. When you want to retrieve the data you wrote to the CD-R, the laser moves back over the disc and thinks that each burnt spot is a bump. The problem with this approach is that you can only write data to a CD-R once. After the dye has been burned in a spot, it cannot be changed back.

CD-RW fixes this problem by using phase change, which relies on a very special mixture of antimony, indium, silver and tellurium. This particular compound has an amazing property: When heated to one temperature, it crystallizes as it cools and becomes very reflective; when heated to another, higher temperature, the compound does not crystallize when it cools and so becomes dull in appearance.

The Predator is a fast CD-RW drive from Iomega.

CD-RW drives have three laser settings to make use of this property:

• Read - The normal setting that reflects light to the optoelectronic sensor

• Erase - The laser set to the temperature needed to crystallize the compound

• Write - The laser set to the temperature needed to de-crystallize the compound

Other optical devices that deviate from the CD standard, such as DVD, employ approaches comparable to CD-R and CD-RW. An older, hybrid technology called magneto-optical (MO) is seldom used anymore. MO uses a laser to heat the surface of the media. Once the surface reaches a particular temperature, a magnetic head moves across the media, changing the polarity of the particles as needed.

http://computer.howstuffworks.com/removable-storage.htm

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]