Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физ 2.2 электродин вм ас Лек.doc
Скачиваний:
50
Добавлен:
21.04.2019
Размер:
9.81 Mб
Скачать

8.8. Индуктивность коаксиального кабеля

Коаксиальный кабель представляет собой два длинных соосных прово­дящих цилиндра, пространство между которыми заполнено каким-либо изолирующим материалом с магнитной проницаемостью . Пусть а - радиус внутреннего цилиндра, а b - внешнего. Длина кабеля обычно во много раз превышает его радиус. Поэтому магнитное поле, создава­емое электрическим током в кабеле, будет таким же как у бесконечно длинного кабеля, если не учитывать искажения поля у его концов.

Найдем индуктивность участка кабеля длиной l. Для этого создадим замкнутую электрическую цепь из внутреннего и внешнего цилиндров кабеля и подключим к этой цепи источник постоянной ЭДС (рис. 8.6, а). Токи, создаваемые этой ЭДС, потекут по поверхностям цилиндров вдоль их оси в противоположных направлениях.

а)

В силу цилиндрической симметрии системы силовые линии магнит­ного поля суть семейство окружностей, центры которых лежат на оси симметрии. На рис. 8.6, а изображена одна из силовых линий. Для определения напряженности магнитного поля применим теорему (7.7) о циркуляции вектора Н . В качестве контура интегрирования С выберем силовую линию произвольного радиуса г. Циркуляция вектора напря­женности по такому контуру буд

Hdl = H dl =H dl = Н 2r. (8.33)

H

Рис. 8.6. Коаксиальный кабель

Если радиус контура С меньше радиуса внутреннего цилиндра (г < а), то внутри контура С ток не протекает. В случае, когда кон­тур С охватывает оба цилиндра (г > 6), сумма токов равна нулю, так как токи в цилиндрах имеют противоположные направления. Поэтому напряженность магнитного поля Я = 0 при г < а и г > Ь, т.е. магнитное поле внутри малого цилиндра и вне большого отсутствует. Если радиус контура С таков, что а < г < Ь, то такой контур охватывает только ток во внутреннем цилиндре. При этом по теореме (7.7) циркуляция (8.32) будет равна силе тока / в рассматриваемой цепи:

2rН = I.

Таким образом, напряженность магнитного поля внутри коаксиального кабеля

Н = I /2r.

Плотность энергии магнитного поля в пространстве, где а < r < b, найдем по формуле (8.28):

w = (1/2) H2 = (1/2) I2 /82 r2. (8.35)

Найдем энергию магнитного поля внутри кабеля. Для этого рассмо­трим цилиндрический слой, образованный двумя воображаемыми цилин­драми радиусов r и r + dr (рис. 8.6, б). Если длина слоя равна l, то его объем dV = 2rldr. Так как плотность энергии (8.35) зависит только от г, внутри тонкого цилиндрического слоя она будет всюду одна и та же. Поэтому энергия магнитного поля в слое

dW = w(r) dV =(1/2) ( I2 /(82r2))2rldr

.

Проинтегрировав это выражение по r в пределах от а до b, найдем энер­гию магнитного поля на участке кабеля длиной l:

W = (1/4) I2l =(1/4) I2l ln(b/a) (8.36)

С другой стороны, энергию магнитного поля можно определить по формуле (8.26). Приравняем эти выражения и найдем индуктивность участка коаксиального кабеля длиной l:

L= 2W/I2 =(1/2) l ln(b/a) (8.37)