Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
soprom.doc
Скачиваний:
8
Добавлен:
15.04.2019
Размер:
4.87 Mб
Скачать

5.9. Косой изгиб

Под косым изгибом понимается такой случай изгиба, при котором плоскость изгибающего момента не совпадает ни с одной из главных осей поперечного сечения (рис. 5.27, а). Косой изгиб удобнее всего рассмотреть как одновременный изгиб бруса относи­тельно главных осей x и y поперечного сечения бруса. Для этого общий вектор изгибающего момента М, действующего в попереч­ном сечении бруса, раскладывается на составляющие момента от­носительно этих осей (рис. 5.27, б):

Mx = Msin;     My = Mcos . (5.25)

Введем следующее правило знаков для моментов Mx и My  момент считается положительным, если в первой четверти коорди­натной плоскости (там, где координаты x и y обе положительны) он вызывает сжимающие напряжения.

Рис. 5.27

На основании принципа независимости действия сил нормаль­ное напряжение в произвольной точке, принадлежащей к попереч­ному сечению бруса и имеющей координаты xy, определяется суммой напряжений, обусловленных моментами Mx и My , т.е.

. (5.26)

Подставляя выражения Mx и My  из (5.25) в (5.26), получим:

.

Из курса аналитической геометрии известно, что последнее вы­ражение представляет собой уравнение плоскости. Следовательно, если в каждой точке сечения отложить по нормали вектор напря­жения , то концы векторов образуют геометрическое место точек, принадлежащих одной плоскости, как и при поперечном изгибе.

Уравнение нейтральной линии, т.е. геометрического места точек, где нормальное напряжение принимает нулевые значения, найдем, полагая в (5.26)  = 0:

.

Откуда определяется:

. (5.27)

Поскольку свободный член в (5.27) равен нулю нейтральная линия всегда проходит через начало координат. Как видно из выражения (5.26), эпюра напряжений в поперечных сечениях бруса линейна, следовательно, максимальные напряжения в сечении воз­никают в точках наиболее удаленных от нейтральной линии. В том случае, когда сечение имеет простую форму (прямоугольник, круг), положение наиболее опасных точек легко определяется визуально. Для сечений, имеющих сложную форму, необходимо применить графический подход.

Далее покажем, что при косом изгибе нейтральная линия не перпендикулярна к плоскости действия изгибающего момента, как это всегда выполнялось при поперечном изгибе. Действительно угловой коэффициент K1 следа момента (рис. 5.27, б) равен:

K1 = tg  . (5.28)

Угловой же коэффициент нейтральной линии, как это следует из (5.27), определяется выражением:

tg   = K2  . (5.29)

Так как в общем случае Ix  Iy, то условие перпендикулярности прямых, известное из аналитической геометрии, не соблюдается, поскольку K1   . Брус, образно выражаясь, предпочитает изги­баться не в плоскости изгибающего момента, а в некоторой другой плоскости, где жесткость на изгиб будет минимальной.

5.10. Пример расчета (задача № 11)

Стальная балка АВ, расчетная схема и поперечное сечение ко­торой показаны на рис. 5.28, а, (c = 0,03 м) нагружена силами Р1 и Р2. Требуется:

1. Построить эпюры изгибающих моментов в главных плоско­стях инерции;

2. Установить по эпюрам изгибающих моментов опасное сече­ние балки. Найти для опасного сечения положение нулевой линии;

3. Вычислить наибольшие растягивающие и сжимающие нор­мальные напряжения;

4. Определить значение полного прогиба в середине пролета балки и указать его направление.

Решение

1. Построить эпюры изгибающих моментов в глав­ных плоскостях инерции. Ввиду симметричности сечения бал­ки относительно осей x и y (рис. 5.28, а), можно сделать вывод, что эти оси  главные. Для построения эпюр изгибающих моментов, используя принцип независимости действия сил, представим косой изгиб как изгиб в двух главных плоскостях инерции бруса (рис. 5.28, бг). Определив опорные реакции, составим аналитиче­ские выражения изгибающих моментов и вычислим их значения в характерных сечениях. Построим эпюры изгибающих моментов Mx и My  (рис. 5.28, вг), откладывая ординаты со стороны растянутых волокон. В соответствии с принятым правилом знаков (п. 5.9), Mx < 0, My > 0.

2. Установить по эпюрам изгибающих моментов опасное сечение балки. Найти для опасного сечения положение нулевой линии. Сравнивая ординаты эпюр Mx и My , делаем вывод, что опасными могут быть сечения D или С, т.к. в них предположительно возникают наибольшие по величине изгибающие моменты. Для того, чтобы установить, какое из них является наиболее опас­ным, нужно вычислить возникающие в сечениях C и D наибольшие нормальные напряжения и сравнить их. Теоретически доказано, что если контур поперечного сечения так вписывается в прямо­угольник, что четыре крайние точки сечения совпадают с углами прямоугольника, то максимальное нормальное напряжение будет в одном из углов прямоугольника и определится по формуле:

,

где все величины берутся по абсолютной величине. У нас именно такой случай. Осевые моменты инерции сечения вычислим по следующим зависимостям:

=

м4;

м4.

Моменты сопротивления сечения Wx и Wy определятся следу­ющим образом:

м3;

м3.

Таким образом, наибольшие напряжения в сечениях С и D рав­ны:

сечение С

кПа = 10,29 МПа;

сечение D

кПа = 10,38 МПа.

Рис. 5.29

Сравнивая эти значения, заключаем  опасным является сече­ние D. Подставив значения Ix , Iy , Mx , My  в формулу (5.29) полу­чим:

= 0,535,  откуда   28,17.

Нулевая линия пройдет в тех четвертях поперечного сечения, в которых изгиба­ющие моменты будут вызы­вать нормальные напряже­ния разных знаков. В на­шем случае это будут пер­вая и третья четверти. По­этому, отложив угол   28,17 от оси x против хода часовой стрелки, проведем нулевую линию (рис. 5.29).

3. Вычислить наибольшие растягивающие и сжима­ющие нормальные напряжения. Вершины стрелок нормаль­ных напряжений, определяемых по формуле (5.26) будут лежать на плоскости, пересекающей плоскость поперечного сечения по нуле­вой линии. При взгляде на плоскость напряжений вдоль нулевой линии мы увидим ее в виде прямой, ординаты которой показаны в виде эпюры  на рис. 5.29. Наибольшие нормальные напряжения будут иметь место в точках 2 и 4 и различаться только знаком. Дей­ствительно, подставляя в формулу (5.26) координаты точек 2 и 4, получаем:

точка 2

  10385 кН/м2   10,38 МПа;

точка 4

  10385 кН/м2   10,38МПа.

Отложив в удобном масштабе полученные величины напряже­ний, построим эпюру напряжений  (рис. 5.29).

4. Определить значение полного прогиба в середине пролета балки и указать его направление. Полный про­гиб (перемещение центра тяжести сечения С) вычисляем по фор­муле:

,

где  проекции полного прогиба на главные оси. Эти ве­личины можно определить методом начальных параметров. Начало координат поместим на левом конце балки в точке А.

Прогиб в плоскости x0z. Начальные параметры:

кН.

Составим выражение прогибов fx (z) с помощью универсального уравнения упругой линии балки:

. (5.30)

Величину 0 определим из условия, что при fx (l) = 0. Под­ставляя в выражение (5.30) z = l = 4 м, получим:

;

.

Окончательно выражение прогибов fx (z) будет иметь вид:

. (5.31)

Для определения прогиба в середине пролета подставим z = = 0,5l = 2 м в выражение (5.31):

кНм3.

Учитывая, что Е = 2108 кН/м2 и Iy = 891108 м4, получаем:

м = 7,4510-4 м.

Прогиб в плоскости y0z. Начальные параметры:

кН.

Выражение для прогибов fy (z) получаем с помощью метода на­чальных параметров:

. (5.32)

Подставляя z = l = 4 м в выражение (5.32) и учитывая, что в т. В прогиб равен нулю, получаем уравнение для определения :

,

откуда

.

Окончательно выражение для прогибов fy (z) будет иметь вид:

. (5.33)

Для определения прогиба в середине пролета подставим z = = 0,5 l = 2 м в выражение (5.33):

кНм3;

м = 0,64104 м.

Определим величину модуля вектора полного прогиба

м.

Направление вектора полного прогиба показано на рис. 5.30. При этом, угол  определим по формуле:

;     = 40,5.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]