Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Бондаренко.doc
Скачиваний:
951
Добавлен:
22.03.2016
Размер:
7.48 Mб
Скачать

7.1.3. Охрупчивание металла сварного соединения при эксплуатации

Под действием рабочих температур и напряжений в сварном соединении могут протекать процессы сигматизации, 475-градусной хрупкости и радиационное охрупчивание.

Сигматизация – это появление в структуре металла шва хрупкой и твердой (6000...8000 МПа) немагнитной составляющей, которую назвали фазой. Это интерметаллид, имеющий сложную кристаллическую решетку и переменный состав. Так, –фаза, образовавшаяся в стали 25–20 после нагрева в течение 1000 часов, содержала 51,82 % Сг, 3 % Ni, 1,1 % Si, 0,61 % Mn, 44,67 % Fe. Появление её в швах резко снижает ударную вязкость.

В аустенитных швах сталей типа 25–20 сигматизация возникает при длительном нагреве при Т = 650...900 °С и особенно при 800...875°С. В этом случае возможно выпадение из аустенита мелкодисперсных карбидов и местное превращение –. В таких швах V, Сг, Mn, W, Ni, Co, Si, Nb, Сu ускоряют сигматизацию. Углерод препятствует этому процессу.

В аустенитно-ферритных швах сталей типа 18–8 сигматизация наблюдается при длительном нагреве в интервале 500...875 °С в результате перерождения  () железа в –фазу. Скорость и степень сигматизации значительно зависит от состава феррита и характера его легирования, поскольку –фаза образуется непосредственно в феррите. Появлению –фазы в аустенитно-ферритном шве способствуют элементы-ферритизаторы, тогда как аустенизаторы, в том числе и Мn, делают швы менее склонными к сигматизации.

Наиболее эффективное средство борьбы с сигматизацией металла швов – нагрев до Т = 1000...1150 °С, выдержка 1 час и быстрое охлаждение. В этом случае обеспечивается полное растворение –фазы в аустените и дальнейшая невосприимчивость швов к воздействию опасных температур. Но содержание феррита в А–Ф швах не должно превышать 5 %.

475-градусная хрупкость связана с длительным нагревом в интервале Т = 325...525 °С и в особенности при 475 °С.

В этом случае наблюдается повышение прочности, уменьшается пластичность и особенно ударная вязкость, падает электрическое сопротивление и стойкость против МКК. 475-градусная хрупкость присуща А–Ф сталям.

Для устранения этого вида хрупкости уменьшают содержание феррита до 2...5 % или применяют закалку.

Радиационное охрупчивание происходит под воздействием нейтронов и –частиц. В этом случае в кристаллической решетке металлов образуются трансмутации Н и Не, а также вакансии, поскольку атомы твердых тел выбиваются из своих регулярных положений и переходят в междуузлия, это повышает прочность и снижает пластичность основного металла и особенно сварных швов.

Для гомогенных сталей это можно устранить при нагреве до Т=0,5Тпл. Большую работоспособность в условиях нейтронного облучения имеют стали типа 25–20 с Ni>10 % или стали 15–35 с С0,02 %. Свариваемость облученных сталей (ремонт) ниже, чем у необлученных. Пористость наблюдается в результате выхода Н и Не.

7.1.4. Поры в наплавленном металле

Наличие водорода в хромоникелевых сплавах определяется его высокой растворимостью в аустените и незначительной скоростью диффузии. Это обусловливает наличие пор в металле шва.

Для устранения пор применяют все меры, которые позволяют избежать попадания водорода в металл шва (см. гл. 4).