Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Контр. Раб. по математике

.doc
Скачиваний:
12
Добавлен:
17.05.2015
Размер:
1.56 Mб
Скачать

; ; .

Следовательно

Задача 3. Определить при каком значении параметра k векторы и ортогональны.

Если векторы ортогональны, то их скалярное произведение равно нулю.

;

;

;

.

Задача 4. Даны вершины тетраэдра A, B, C, D. Найти высоту опущенную из вершины D. Определить угол, образуемый ребром AD с плоскостью основания.

Найдём координаты векторов: ; ; . Вычислим объём тетраэдра по формуле .

. Тогда .

Определим площадь основания тетраэдра .

Высоту определим из формулы : .

Вектор является вектором нормали плоскости основания тетраэдра. Из определения скалярного произведения и формул приведения следует, что . . Откуда находим .

Задача 5. Даны координаты вершин треугольника A(1, 2), B(-3, -1), C(4, -2). Составить уравнения сторон треугольника, уравнение медианы и высоты, проведенных из вершины A. Найти длину высоты, опущенной из вершины B. Сделать чертёж в плоскости xOy.

Составим уравнение сторон треугольника по формуле прямой проходящей через две данные точки .

AB:

АС:

ВС:

Высота , то есть вектор нормали основания является направляющим вектором высоты. Используя каноническое уравнение прямой , получим

Медиана АМ проходит через середину отрезка ВС точку М.

М или М( 0,5; -1,5). Тогда уравнение медианы АМ:

Длина высоты равна расстоянию от точки В до прямой АС. Это расстояние найдём по формуле : .

Задача 6. Определить тип кривых второго порядка и их основные параметры. Сделать чертёж.

  1. -- окружность с центром в точке и радиусом равным пяти.

  2. -- эллипс с центром в точке , большой полуосью b=12, малой полуосью a=7, расстояние от центра до фокуса .

Эксцентриситет эллипса: .

Директриса: .

  1. - гипербола с центром в точке , мнимой полуосью b=4, действительной полуосью a=3, расстояние от центра до фокуса .

Эксцентриситет эллипса: .

Директриса: .

Асимптоты гиперболы:

4) - парабола с вершиной в точке и расстоянием от фокуса до директрисы 2. Ветви направлены в лево.

Задача 7. Найти угол между плоскостями и . Написать каноническое уравнение линии пересечения плоскостей.

Угол между плоскостями равен углу между их векторами нормали и . Тогда .

Тогда . Следовательно .

Вектор нормали искомой прямой это векторное произведение и :

.

Найдем точку принадлежащую прямой. Для этого решим систему : Одну координату зададим сами, например . Тогда Очевидно , что эта точка . Уравнение прямой найдем по формуле: .

Задача 8. Найти точку M пересечения прямой l: и плоскости π: Написать уравнение прямой, проходящей через точку A(1; -2; -1): а) параллельно данной прямой (l1 ); б) перпендикулярно данной плоскости ( l2 ). Найти точку B, симметричную данной точке A относительно данной плоскости.

Запишем параметрическое уравнение прямой l:

Решим систему Для этого подставим значения x, y, z из первых трех уравнений в четвертое, получим . Откуда Подставляя в систему найдём M(-1; 0; 1).

Если прямые параллельны, то их направляющие векторы коллинеарны, то есть уравнение прямой l1:

Направляющий вектор прямой, перпендикулярной плоскости будет вектор нормали данной плоскости. Тогда l2:.

Точка B лежит на прямой l2. Середина отрезка AB – это точка О пересечения прямой и плоскости. Найдём её координаты. Для этого подставим значения x, y, z из первых трех уравнений в четвертое, получим . Откуда Подставляя в систему найдём О(0; 0; 0). С другой стороны координаты точки О, как середины отрезка . Приравняв соответствующие координаты и подставив в полученные формулы координаты точки А, получим В(-1; 2; 1).

ОСНОВНАЯ ЛИТЕРАТУРА:

  1. Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. М., Наука, 1986. – 576 С.

  2. Луканкин Г.Л., Мартынов Н.Н., Шадрин Г.А., Яковлев Г.Н. Высшая математика: пособие для студентов пединститутов. – М.: Просвещение, 1988. – 431 с.

  3. Баврин И.И. Курс высшей математики. Учебник для студентов пединститутов. - М., Просвещение ,1992. – 400 с.

  4. Пак В.В., Носенко Ю.Л. Высшая математика. – Донецк: Сталкер, 1997. – 599 с.

  5. Шипачёв В.С. Курс высшей математики. Учебник. – М.: Проспект, 2004. – 600 с.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

  1. Письменный Д.Т. Конспект лекций по высшей математике: полный курс. – М.: Айрис – Пресс, 2006. – 608 с.

  2. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах (в двух частях). М., Высшая школа, 1980. – Ч.1. – 320 с., Ч.2. – 365 с.