Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Химическая связь.docx
Скачиваний:
373
Добавлен:
12.04.2015
Размер:
982.72 Кб
Скачать

1.3. Особенности ковалентной связи

Помимо характеристик, общих для любой химической связи (энергия, длина), ковалентная связь имеет дополнительные особенности: кратность, насыщаемость, направленность, сопряжение, полярность и поляризуемость.

Кратность

Между соединяемыми атомами могут образоваться одна, две или три ковалентные связи.

Кратность (или порядок) ковалентной связи характеризуется числом общих электронных пар между соединяемыми атомами.

Пару электронов между атомами изображают соединительной чертой – валентным штрихом.

При наличии одной электронной пары между соединяемыми атомами говорят о простой (ординарной, или одинарной) ковалентной свя­зи.

Например, в молекулах Н2, F2, HF, Н2О, NH3, СН4, CH3СН3 или сложных ионах ОН-, [NH4]+, [Zn(OH)4]2-, [Cu(NH3)4]2+ все связи между атомами ординарные и являются σ-связями.

При наличии у соединяемых атомов двух или трёх общих электронных пар между ними имеется соответственно двойная или тройная ковалентная связь, при этом одна связь – обязательно σ-связь, остальные – π-связи.

Примерами могут служить молекулы или многоатомные ионы, где между атомами есть кратные (двойные или тройные) связи: N≡N (азот), Н2С=СН2 (этилен), H2C=O (формальдегид), НС≡СН (ацетилен), О=N-O-, C≡N- (цианид - ион).

С увеличением кратности ковалентной связи уменьшается её длина и повышается прочность:

rсв, пм1

154

134

120

Δ r, пм

20

14

Есв, кДж/моль

350

607

829

Δ Есв, кДж/моль

257

222

Однако увеличение энергии ковалентной связи, как видно из приведённых значений, не пропорционально увеличению её кратности, что указывает на различие в энергиях σ- и π-связи, причём Еσ > Еπ. Это обусловлено тем, что эффективность перекрывания атомных орбиталей при образовании σ-молекулярной орбитали выше, чем при образовании π-молекулярной орбитали.

Насыщаемость

Каждый атом способен образовывать определённое число ковалентных связей, благодаря этому молекулы имеют определённый состав: Н2, H2O, PCl5, СН4.

Число возможных ковалентных связей, образуемых данным атомом, зависит при обменном механизме от числа неспаренных электронов на внешнем энергетическом уровне атома в основном и в возбуждённом состояниях, а при донорно-акцепторном — ещё и от числа свободных орбиталей на внешних уровнях.

При определении числа ковалентных связей, которые атом данного элемента может образовывать по обменному механизму, следует учитывать, что при переходе атома в возбуждённое состояние число его неспаренных электронов может увеличиваться в результате распаривания некоторых электронных пар и перехода электронов на более высокие энергетические подуровни. Если энергия, затраченная на возбуждение атома, невелика, то она может компенсироваться энергией образующейся химической связи, и возбуждённое состояние атома стабилизируется.

Небольшими затратами энергии сопровождаются переходы электронов на более высокие энергетические подуровни внутри уровня. Переходы электронов с энергетических подуровней одного уровня на подуровни другого уровня требуют больших затрат энергии, поэтому возбуждённые состояния у атомов элементов первых трёх периодов Периодической системы химических элементов Д. И. Менделеева, возникающие в результате таких переходов, не могут стабилизироваться химическими связями.

Определим валентности1атомов элементов первого и второго периодов периодической системы химических элементов в основном и возбуждённом состояниях.

Атом водорода имеет один электрон, поэтому его валентность всегда равна I.

В атоме гелия два электрона занимают ls-орбиталь. Распаривание и переход одного из этих электронов на более высокий энергетический уровень требует больших затрат энергии, поэтому атом гелия является химически инертным.

Валентности атомов лития Li, азота N, кислорода O, фтора F и неона Ne равны числу неспаренных электронов в основном состоянии, так как распаривание электронных пар атомов этих элементов возможно только при переходе электрона на более высокий энергетический уровень:

Из приведённых схем электронных формул видно, что валентность атома лития равна I, азота – III, кислорода – II, фтора – I, неона – 0. В атомах бериллия Be, бора B и углерода C может происходить распаривание электронных пар и переход электронов с 2s-подуровня на вакантные орбитали 2р-подуровня.

Переход на более высокий энергетический подуровень внутри уровня не требует большой затраты энергии, и она может быть скомпенсирована за счёт образования химической связи. И поэтому такие переходы осуществляются в условиях обычных химических реакций. Поэтому валентности II, III и IV, присущие соответственно атомам Be, В и С в возбуждённом состоянии, более характерны, чем валентности I и II соответственно атомов В и С, определяемые числом неспаренных р-электронов в их основном состоянии:

Начиная с третьего периода, у атомов р-элементов при возбуждении электроны внешних s- и р-подуровней могут переходить на вакантный d-подуровень, что обуславливает увеличение числа возможных химических связей. Именно этим объясняется способность атомов фосфора Р образовывать пять химических связей (PCl5), атомов серы S – четыре (SO2) или шесть (SO3), а атомов хлора Cl – три, пять и даже семь (происходит, так называемое расширение октета):