Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
метрек_ по_контр 5.doc
Скачиваний:
29
Добавлен:
21.03.2015
Размер:
2.58 Mб
Скачать

10. Вычисление объема тела вращения

Пусть криволинейная трапеция, ограниченная прямыми x = a, x= b,

y = 0 и непрерывной кривой y = f(x), где для, вращается вокруг осиОX. Объем полученного при этом тела вращения (рис. 4) вычисляется по формуле:

. (14)

Если криволинейная трапеция ограничена линиями x = a, x= b,

y1 = f1(x) и y2 = f2(x) где для, то объем полученного при ее вращении вокругОX тела (рис. 5) можно вычислить по формуле:

. (15)

11. Вычисление длины дуги плоской кривой

Пусть плоская кривая АВ задана уравнением y = f(x), где . Если функцияf(x) и ее производная f·′(x) непрерывны на промежутке [a; b], то длина кривой АВ вычисляется по формуле:

. (16)

Примерный вариант и образец выполнения контрольной работы по теме «Интегральное исчисление функции одной переменной»

Задача 1. Найти неопределенные интегралы:

, ,,.

В примерах правильность полученных результатов проверить дифференцированием.

Задача 2. Вычислить несобственные интегралы или доказать их расходимость:

а), б) .

Задача 3.

а) Вычислить с помощью определенного интеграла площадь фигуры, ограниченной в ДСК линиями l1: и l2: . Сделать чертеж.

б) Вычислить с помощью определенного интеграла площадь фигуры, ограниченной в ПСК линией l: . Сделать чертеж.

Задача 4. Вычислить с помощью определенного интеграла объем тела, полученного вращением вокруг оси OX фигуры, ограниченной линиями

l1: и l2: y = 6x. Сделать чертеж.

Задача 5. Вычислить с помощью определенного интеграла длину дуги кривой, заданной в ДСК уравнением , где . Сделать чертеж.

Решение задачи 1.

а) Так как , то используя формулу (3), получим:

.

Проверим результат дифференцированием:

следовательно, выполнено условие (1).

Ответ: .

б) Интеграл относится к типу интегралов, берущихся по частям; это интеграл так называемого второго типа. Используя формулу (4), получим:

.

Проверим результат дифференцированием:

.

Ответ: .

в) Подинтегральная функция является правильной рациональной дробью, поэтому ее можно представить в виде суммы простейших дробей:

, отсюда

, или .

Неопределенные коэффициенты А, В, С найдем, приравнивая коэффициенты при одинаковых степенях х в левой и правой частях тождества:

Коэффициенты А, В, С можно найти другим способом подставляя в тождество «удобные» значения х (метод отдельных значений):

Из первого уравнения получим: . Почленно вычитая два последних равенства, получим:, и из последнего уравнения

.

Таким образом,

Переходим к интегрированию:

.

Здесь использовано: ,

.

Проверим результат дифференцированием:

.

Ответ: .

г) Применим универсальную тригонометрическую подстановку:

.

Возвращаясь к переменной х, получаем:

.

Ответ: .

Решение задачи 2.

а) Данный интеграл является несобственным интегралом первого рода, поэтому

,

следовательно, интеграл сходится и равен .

Здесь использовано:.

Ответ: .

б) Данный интеграл является несобственным интегралом второго рода, поэтому

,

следовательно, интеграл сходится и равен .

Ответ: .

Решение задачи 3.

а) Найдем точки пересечения кривых, для чего составим и решим систему . Приравнивая правые части, получаем уравнение , решив которое, найдем абсциссы точек пересечения: x = 1, x = 3.

Построим чертеж (рис. 6). На рисунке видно, чтона промежутке [1; 3].

Таким образом, используя формулу (12), вычислим площадь фигуры, ограниченной заданными линиями:

.

Ответ: единиц площади.

б) Для построения кривой в ПСК составим таблицу значений функции на промежутке .

0

π/4

2π/4

3π/4

π

5π/4

6π/4

7π/4

2π

13

12,7

12

11,3

11

11,3

12

12,7

13

Построим чертеж в ПСК (рис. 7).

Так как фигура ограничена кривой,

заданной в полярной системе координат, то

площадь фигуры, ограниченной заданной линией, вычислим по формуле (13):

.

Для получаем:

.

Ответ: единицы площади.

Решение задачи 4.

Для построения фигуры Ф, ограниченной кривыми l1 и l2 нужно найти точки их пересечения, т.е. решить систему: . Приравнивая правые части равенств, получаем уравнение , решив которое, найдем абсциссы точек пересечения кривых: .

Объем тела вращения, полученного вращением фигуры Ф вокруг оси OX (рис. 8) можно найти как разность объемов двух тел по формуле (15):

.

Ответ: единиц объема.

Решение задачи 5.

Кривая задана уравнением где , поэтому ее длина вычисляется по формуле (16): .

Для получаем: ,

тогда длина дуги кривой

.

Ответ: единиц длины.