Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

РУКОВОДСТВО ДЛЯ ВРАЧЕЙ

.docx
Скачиваний:
0
Добавлен:
13.03.2024
Размер:
52.85 Mб
Скачать

Содержание глюкозы в сыворотке крови при инфузии ее 5 % раствора, ммоль/л

Доза инсулина, ЕД (на 250 г глюкозы)

7,2 (130 мг%) 8,3 (150 мг%) 11,1 (200 мг%) 13,9 (250 мг%)

6 10 18 25

Применение глюкозы в целях ПП показало ее хорошую усвояемость. Во избежание раздражения интимы сосудов, возникновения флебитов концентрированные растворы глюкозы следует вводить только в центральные вены. В качестве рекомендуемых углеводных растворов для Π Π могут быть использованы 5, 10, 20 и 40 % растворы глюкостерила («Фрезени-ус») (табл. 39.2). Глюкостерил дает организму калории, которые быстро усваиваются. Одновременно эти растворы могут быть использованы как донаторы свободной безэлектролитной воды. Общая суточная доза должна быть не более 1,5—3 г глюкозы на 1 кг массы тела. Вводят растворы внутривенно капельно, контролируя электролитный баланс. Oc-молярность 5 % раствора глюкостерила равна 277 мосм/л, 10 % — 555 мосм/л, 20 % — 1110 мосм/л и 40 % раствора — 2220 мосм/л. ^ Таблица 39.2. Концентрация глюкостерила и скорость введения

Концентрация

Скорость введения

мл/кг-ч

капель/мин

5 % (200 ккал/л)

3

70

10 % (400 ккал/л)

2,5

60

20 % (800 ккал/л)

1,7

40

40 % (1600 ккал/л)

0,8

20

Фруктоза. Наряду с глюкозой в целях ПП применяют фруктозу (левулеза), которая при ряде заболеваний оказывается предпочтительнее, чем глюкоза. Фруктоза ме-таболизируется преимущественно в печени, независимо от инсулина, и стимулирует образование глюкозы. Она оказывает сильное антикето-генное действие, быстро усваивается и незначительно усиливает диурез, что позволяет применять ее в повышенных суточных дозах. При заболеваниях печени, сердца и шоке обмен фруктозы прекращается не так быстро, как глюкозы. Полагают, что фруктоза оказывает специфи- ческое влияние на обмен аминокислот, останавливает глюконеогенез и таким образом сохраняет аминокислоты. В то же время фруктоза не может быть использована клетками мозга. Это свойство является основной метаболической функцией глюкозы. Растворы фруктозы вводят со скоростью 0,25—0,5 г/кг-ч. В клинической практике также применяется инвертный сахар (инвертоза), который состоит из равных частей глюкозы и фруктозы. Общие противопоказания к назначению растворов глюкозы и фруктозы — непереносимость глюкозы или фруктозы, сахарный диабет без одновременного контроля концентрации глюкозы крови, гипергидратация, повышение осмо-лярности крови, отравления метиловым спиртом, гипокалиемия. Нередко растворы глюкозы и фруктозы комбинируют с электролитами. В этих случаях их нельзя применять при почечной недостаточности, ги-перкалиемии и декомпенсирован-ной сердечной недостаточности. Жировые эмульсии находят широкое применение для энергетического обеспечения при ПП (табл. 39.3). Высокая калорийность жира (9,3 ккал/г) в малом количестве вводимой жидкости позволяет обеспечить 30—40 % и более небелковых энергетических потребностей. Сырьем для производства жировых эмульсий являются растительные масла: соевое, хлопковое или сафлоровое. Для эмульгирова-ния масел до хиломикронов размером до 1 мкм используются яичный лецитин или соевые фосфолипиды. Изотоничность с кровью достигается путем добавления глицерола. Данное свойство жировых эмульсий очень важно, так как позволяет вводить их в периферические вены без опасности возникновения флебитов. Из жировых эмульсий наиболее известны липовеноз, липофундин, UH-тралипид «третьего поколения». Они, ^ Таблица 39.3. Жировые эмульсии

Эмульсия

Состав

липовеноз

интралипид

липофундин

10 %

20 %

10 %

20 %

10 %

20 %

Жирные кислоты, %

линолевая

54

87

50

50

26,7

27,1

олеиновая

26

26

13,8

13,0

линоленовая

8

9

9

9

3,3

3,5

пальмитиновая

_

10

IO

8,4

7,1

со средней длиной цепи, %

44,6

46,4

Калорийность, ккал/сут

1080

2000

1100

2000

1058

1908

Осмолярность, мосм/л

272

360

260

268

345

380

Жировая составляющая

Соевое масло

как правило, выпускаются в виде 10 и 20 % растворов, 1 л которых соответственно дает 1000 и 2000 ккал. Метаболизм жиров сложен. При всасывании через кишечную стенку под влиянием липаз и желчных кислот триглицериды, фосфолипиды и определенные белки образуют частицы размером около 1 мкм — хило-микроны, которые делают возможным существование жира в воде. Это основная транспортная форма жира в воде. Современные требования к жировым эмульсиям: отсутствие побочных реакций, максимальное сходство жировых частиц с хиломикрона-ми человека, наличие незаменимых жирных кислот, отсутствие влияния на свертываемость крови и накопления в ретикулоэндотелиальной системе. Этим требованиям отвечают жировые эмульсии II и III поколений (липофундин МСТ/ЛСТ 10 и 20 % растворы, структурированные липиды, эмульсии типа «Омега-3»), обладающие максимальным коэффициентом утилизации тканями, не вызывающие липидной перегрузки и эмболических осложнений, возможных при применении жировых эмульсий I поколения (интралипид, липофундин, липовеноз и др.). Ли- пофундин МСТ/ЛСТ и другие жировые эмульсии II и III поколений должны быть обязательным компонентом НП. Очень важно медленное капельное введение! Максимально вводят 0,125 г жира на 1 кг массы в 1 ч. Однако сначала эту дозу уменьшают до 0,05 г/кг-ч. Инфузию начинают с 5 капель (!) в минуту и в течение 30 мин постепенно увеличивают до 13 капель/мин. Суточная доза жировых эмульсий не более 250—500 мл. Средняя скорость введения 50 мл/ч. Проникновение жирных кислот с длинной цепью в митохондрии происходит более физиологично, чем жирных кислот со средней цепью. Это подтверждается тем, что в процессе митохондриального обмена не происходит накопления побочного продукта — дикарбоксиленовой кислоты, токсичной для ЦНС [Вретлинд А., Суджян А., 1990]. Значение жиров в общем метаболизме трудно переоценить. Жиры, как и углеводы, являются важнейшими источниками энергии, и попытки возмещения энергозатрат организма одними углеводами не дадут эффекта. Для возмещения энергозатрат с помощью углеводов нужно применять либо очень боль- шие количества жидкости, либо увеличивать концентрацию растворов, что неминуемо сопровождается осмотическим эффектом, усиленным диурезом и перераспределением клеточной и внеклеточной жидкости. При этом перегружается инсули-новый аппарат поджелудочной железы. Больной не получает незаменимых жирных кислот, необходимых для биосинтеза ряда важнейших соединений, таких как простаг-ландины. Глюкоза увеличивает экскрецию норадреналина с мочой, излишек ее сопровождается преобразованием в жир, что ведет к жировой инфильтрации печени. При комбинации с жировыми эмульсиями этот эффект отсутствует. Согласно современным представлениям суточная потребность организма человека в жирах (в виде жировых эмульсий) составляет в среднем 2 г/кг. Использовать жировые эмульсии в виде единственного источника энергии при ПП нецелесообразно. При ΠΠ могут быть различные соотношения вводимых углеводов и жиров (в процентах): 70 и 30, 60 и 40, 50 и 50, 40 и 60, что зависит от вида патологии, переносимости вводимого субстрата и других причин. При применении жировых эмульсий, как и углеводных растворов, необходимы лабораторный контроль (уровень глюкозы в крови, электролитов, холестерина, тригли-церидов, общий анализ крови), учет водного баланса. Жировые эмульсии противопоказаны при нарушениях жирового обмена, тяжелых геморрагических диатезах, нестабильном диабетическом обмене веществ, беременности в I триместре, эмболии, остром инфаркте миокарда, коме неясной этиологии. Как и другие растворы для ПП, жировые эмульсии не следует применять при острых и угрожающих состояниях (коллапс, шок, тяжелая дегидратация, гипергидратация, гипогликемия, дефицит калия).

39.5. Источники аминного азота. Аминокислотные смеси и белковые гидролизаты Белки — важнейшая составная часть организма человека. Они являются не только структурным элементом, но и регулируют многие метаболические и ферментативные процессы, участвуют в иммунитете и других многочисленных жизнеобеспечива-ющих реакциях. Интенсивность белкового обмена у человека очень велика. При недостаточном поступлении белковых субстанций возникают глубокие изменения адаптивной и репаративной регуляции. Посредством внутривенных инфузий цельной крови, эритроцитов, плазмы и альбумина нельзя обеспечить организм человека белками. Несмотря на то что в 500 мл цельной крови содержится 90 г белка [Вретлинд А., Суд-жян А., 1990], использовать кровь как источник аминного азота для Π Π не представляется возможным, так как средняя продолжительность жизни эритроцитов составляет 120 дней, после чего белки эритроцитов расщепляются до аминокислот и могут участвовать в процессах синтеза организма. Аналогично обстоит дело и с инфузиями альбумина, период полураспада которого до 20 дней. Основные источники аминного азота при ПП — растворы кристаллических аминокислот и белковые гидролизаты. Главное требование, предъявляемое к данному классу инфузионных сред, — обязательное содержание в них всех незаменимых аминокислот, синтез которых не может осуществиться в организме человека. Это 8 незаменимых аминокислот: изолейцин, фенилаланин, лейцин, треонин, лизин, трипто-фан, метионин, валин; 6 аминокислот: аланин, глицин, серии, пролин, глутаминовая и аспарагиновая кислоты — синтезируется в организме из углеводов; а 4 аминокислоты: аргинин, гистидин, тирозин и цис-теин — не могут быть синтезирова- ны в достаточном количестве, поэтому их называют полузаменимыми аминокислотами. Включение таких незаменимых аминокислот, как глутамин и аргинин, в программу нутритивной терапии гиперметаболических состояний позволяет добиться принципиально важных при критических состояниях эффектов: • улучшить состояние азотистого обмена, уменьшить процессы катаболизма, стимулировать синтез протеинов в мышечной ткани; • оптимизировать функцию системы Т-лимфоцитов; • снизить частоту инфекционных осложнений. Аминокислоты должны поступать в организм человека в строго определенных количествах и пропорциях. Например, соотношение незаменимых аминокислот (H) и общего азота (О) при проведении ПП у детей и истощенных больных должно быть около 3. Если же ΠΠ проводится для поддержания мало нарушенного азотистого баланса, величина Н/О может быть более низкой - 1,4-1,8. Международным комитетом по питанию за стандарт наиболее полноценного белка для питания человека принят яичный белок. В настоящее время все препараты белка сравнивают с этим стандартом. Огромный практический опыт, накопленный ведущими клиниками мира, показывает, что несбалансированность аминокислотного состава в используемых средах для ΠΠ может нанести существенный вред организму человека, причем это относится не только к недостаточному поступлению одной или нескольких аминокислот, но и к избыточному введению их. Так, избыточное введение глицина может привести к тяжелым токсическим реакциям, напоминающим интоксикацию аммиаком. Экспериментальные исследования показали, что избыточные нормы тирозина приводили к повреждению у крыс лап и глаз, а избыточные дозы цистеина оказывали токсическое воздействие на печень, вызывали цирротические изменения. Избыток фенилаланина может привести к психическим расстройствам и эпилептическим припадкам. В то же время некоторые аминокислотные растворы специально обогащаются аминокислотами для оказания терапевтического действия. Так, отмечено, что гистидин, являясь незаменимой аминокислотой, снижает уровень остаточного азота в крови у больных с уремией, а про-лин способствует более быстрому заживлению ран. Растворы кристаллических аминокислот. Достижения химии позволили синтезировать все аминокислоты в кристаллическом виде. Различают 2 оптически активные формы аминокислот — D и L. Для синтеза различных белков тела организм утилизирует в основном L-формы аминокислот. Исключение составляют лишь D-метионин и D-фенилаланин. Очень важным является то, что синтетические смеси аминокислот лишены каких-либо балластных и нежелательных примесей. Большинство аминокислотных смесей содержит все 8 незаменимых аминокислот, а также гистидин и аргинин (табл. 39.4). Для лучшей утилизации незаменимых аминокислот в синтетические аминокислотные смеси вводят и заменимые аминокислоты. Обычно аминокислотные смеси имеют низкий рН и высокую осмолярность, что необходимо учитывать при ПП. Особое внимание следует обратить на уровень аминного азота в используемой смеси аминокислот. Чем выше уровень аминного азота, тем выше питательная ценность данного препарата и тем меньше его потребуется для покрытия суточной потребности в белке. Так, в 10 % растворе аминостерила KE содержится 16 г азота, т.е. 100 г белка. ^ Таблица 39.4. Состав аминокислотных смесей

Наименование

>я & а 2| Sl^ §"£ 1-1 IU I Se IaI

о и -Q 5 S §т §£ Я g S Q-5РЭ <£-

H I tt §т (D >— >. to UJ Юс^ OS(X S- Il OQ К

Изолейцин

4,67

5,10

2,80

Лейцин

7,06

8,90

3,90

Лизин

5,97

7,00

4,50

Фенилаланин

4,82

5,10

3,90

Тирозин

0,30

0,11

Метионин

4,10

3,80

2,80

Цистеин

0,73

0,28

Треонин

4,21

4,10

2,80

Триптофан

1,82

1,80

1,00

Валин

5,92

4,80

3,70

Общее количество незаменимых аминокислот, г/л

38,57

41,63

25,79

Алании

15,0

13,7

8,0

Аргинин

10,64

9,20

5,60

Аспарагиновая кис-

3,72

1,70

лота

Гл ютами новая кис-

4,60

2,80

лота

Гистидин

2,88

5,20

3,40

Глицин

15,94

7,90

3,90

Пролин

15,0

8,90

3,40

Серии

2,40

2,30

Орнитин

3,20

Аспартиновая

1,30

кислота

Яблочная кислота

1,0

Сорбит

100,0

56,89

Общее количество

98,03

100,0

9,0

аминокислот, г/л

Общий азот, г/л

16,00

16,0

230,0

Калорийность, ккал

400,0

800,0

530,0

Осмолярность

мосм/л

1050,0

1590,0

5,60

PH

Отношение незаме-

нимых аминокислот

к общему азоту

2,40

2,60

Наименование

« &Я 21 SL ч >>*s n >, §1 ^CQn. |§1 < Q-C^

о и t=: nQ η 2^ 5 * §£ £α If <С N^

I и I CX £ <υ^^ Ip £<% ON0, E^ S3S ей S OQ E

Натрий, ммоль/л

30,0

45,0

Калий

20,0

25,0

__

Кальций

——

Магний

5,00

——

Хлориды

60,0

62,00

Ацетат

7,50

Объем флакона, мл

500

500

500

Аминостерил KE (10 % раствор) содержит незаменимые, полузаменимые и заменимые аминокислоты и электролиты. Он используется как для частичного, так и для полного Π Π в сочетании с соответствующим количеством углеводов, жиров и электролитов. Этот раствор благодаря своей биологической структуре полностью отвечает задачам ПП (принцип: картофель—яйцо). Он показан при недостаточном питании, в до- и послеоперационном периодах, при травмах, ожогах, истощающих заболеваниях. Препарат рекомендуется комбинировать с углеводными растворами (глкжостерил) и жировыми эмульсиями (липовеноз). Применяется до 1000 мл в сутки. Скорость инфузии до 1,3 мл/кг-ч, т.е. 25— 30 капель в 1 мин при массе тела 70 кг. Для удовлетворения потребности в калориях растворы углеводов необходимо вводить одновременно. Аминостерил противопоказан при нарушениях обмена аминокислот, почечной недостаточности, декомпенсированной сердечной недостаточности и гипокалиемии. В а м и н ы предназначены для взрослых больных и содержат полный набор всех 18 заменимых и незаменимых аминокислот, необходимых для синтеза белка. Аминограм-ма этих препаратов специально подобрана для достижения положительного азотистого баланса. Цифры в названиях ваминов (вамин-9, вамин-14, вамин-18) означают содержание азота в 1 л раствора. Чтобы определить содержание белка в препарате, необходимо эту цифру умножить на 6,25. Таким образом, 1 л вамина-9 содержит 9 г азота, что соответствует 60 г белка (нормальная потребность); 1 л вамина-14 — 13,5 г азота, что соответствует 85 г белка (умеренно повышенная потребность); 1 л вамина-18 — 18 г азота, что соответствует 112 г белка (значительно повышенная потребность). Буквы EF, добавленные к названию препарата, означают, что раствор не содержит электролитов. Такие растворы имеют более низкую, чем обычные, осмолярность, что позволяет избежать частого и опасного осложнения ПП — гипер-осмолярности. Вамин-14 или -18 показан в случае невозможности или неполноценности энтерального питания при повышенной потребности в белке с одновременным ограничением введения жидкостей. В качестве сред для Π Π следует также применять комбинированные с альтернативными глюкозе углеводами и электролитами 10—15 % растворы кристаллических аминокислот (аминоплазмаль СЭ, полиамин, альвезин, гидрамин), аминокислотные смеси, адаптированные по имеющейся органной дисфункции (аминостерил-Гепа, аминоплазмаль-Гепа, нефрамин).