Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Литература / Фалк_Арменский_ЭлектромеханическиеУстройстваАвтоматики_2002

.pdf
Скачиваний:
0
Добавлен:
26.01.2024
Размер:
1.8 Mб
Скачать

–41–

Формулы момента (2.21), (2.22) и (2.24) получены для режима двигателя, но они справедливы и для других режимов с учетом знака и диапазона значений скольжения s. Зависимость электромагнитного момента от скольжения графически представлена на рис. 2.11 (сплошная линия).

Рис. 2.11

Такой вид характеристики легко поясняется с помощью формул (2.24), (2.15) и (2.16). При увеличении скольжения ток ротора I2 непрерывно растет, но становится все более индуктивным – уменьшается сosψ2 так как увеличивается частота токов в роторе и, соответственно, его индуктивное сопротивление. В результате активная составляющая тока ротора и, соответственно, электромагнитный момент вначале растут, а затем начинают убывать.

Скольжение, при котором момент достигает максимального значения Mмах, называется критическим и обозначается sкр. Для определения sкр необходимо, воспользовавшись выражением (2.22), взять производную dMэм / ds и приравнять ее нулю. Решение получающегося уравнения имеет вид

sкр = ±

CR2'

 

(R1' + (x1 + Cx 2' )2 ).

(2.25)

Принимая в первом приближении С1 1 и R1 0, получим

s кр

= ±

 

R

2'

 

 

.

(x1

+

x

2' )

 

 

 

(2.26)

–42–

В большинстве асинхронных двигателей необходимо обеспечить высокий КПД. Поэтому активное сопротивление обмоток, в частности R2, определяющее уровень электрических потерь в роторе, стремятся получить малым. При этом критическое скольжение лежит в диапазоне 0,1

÷ 0,25.

Подставляем (2.25) в (2.22) и получаем выражение максимального момента:

mU 2

Mmax = ± 2ω1C[± R1 + (1R121+(x1 +Cx2' )2 )].

(2.27)

Знак "+" относится к двигательному режиму, "-" – к генераторному.

Как видно, максимальный момент пропорционален квадрату напряжения питания, не зависит от активного сопротивления роторной цепи R2 и наступает при тем большем скольжении, чем больше активное сопротивление роторной цепи (рис. 2.11, штрих-пунктирная линия, R2B >

R2A).

Пусковой момент двигателя Mп определяется выражением (2.22) при s=1. Значение Mп пропорционально квадрату напряжения питания и возрастает при увеличении R2 (см. рис. 2.11), достигая максимума при sкр

=1.

Номинальное скольжение sном, соответствующее номинальному моменту Мном,возрастает с увеличением R2. Это сопровождается ростом электрических потерь в роторной цепи и снижением КПД. У асинхронных двигателей с малым критическим скольжением Sном = 0,02 - 0,06.

Уравнение равновесия моментов на валу двигателя.

Электромагнитный момент, развиваемый двигателем, преодолевает момент нагрузки Мн, прикладываемый к валу двигателя, и собственный момент сопротивления двигателя Мо (момент холостого хода), определяемый механическими и добавочными потерями в двигателе. Результирующий момент определяет значение и знак ускорения ротора:

dω

=

МэмМ0 Мн

,

( 2.28)

 

 

dt

J

 

где J - момент инерции вращающихся частей – ротора и нагрузки.

Это диффиренциальное уравнение движения электропривода, состоящего из двигателя и нагрузки, преобразованное к виду

Мэм = М0 + Мн + J(dω/dt),

(2.29)

–43–

называют уравнением равновесия моментов на валу двигателя. В этом уравнении М0 + Мн = Мст - статический момент сопротивления,

J(dω/dt)=Мдин - динамический момент сопротивления. Электромагнитный момент Мэм за вычетом момента М0 называют

полезным или вращающим моментом на валу и обозначают М2. Из уравнений (2.28) и (2.29) следует, что:

1) если Мэм = Мст, то dω/dt = 0, ω =const т.е. двигатель работает в установившемся (статическом) режиме, при этом М2 = Мн;

2) если Мэм > Мст, то угловая скорость ротора возрастает, т.е. двигатель работает в переходном ( динамическом ) режиме; 3) если Мэм < Мст, то угловая скорость ротора убывает, т.е. двигатель работает в переходном режиме.

В общем случае при составлении уравнения равновесия моментов следует учитывать знаки моментов, которые определяются направлением действия моментов по отношению к положительному направлению вращения. Если двигатель создает электромагнитный момент, действующий в положительном направлении, то момент считается положительным ( Мэм > 0 ). Если двигатель переходит в тормозной режим, его момент начинает действовать в противоположном направлении ( Мэм< 0 ).

Статические моменты сопротивления, создаваемые рабочим механизмом и передаточным устройством, бывают двух видов:реактивные и активные, или потенциальные. Реактивные моменты сопротивления всегда направлены против направления вращения, т.е. являются тормозными (Мст< 0 ). К реактивным моментам относятся моменты сил трения, в том числе в самом двигателе, моменты сопротивления при резании металла на обрабатывающих станках и т.д. Активный момент всегда действует в одном и том же направлении, независимо от направления вращения, т.е. может либо препятствовать движению ( М>0 ), либо способствовать ему ( Мст <0 ). К активным моментам относятся моменты сил тяжести, сил упругости пружин и т.д.

Механические характеристики. Уравнением естественной механической характеристики асинхронного двигателя является выражение (2.21) или (2.22) с заменой скольжения S на угловую скорость ω2 по (2.8) при U1=const. График характеристики изображен на рис. 2.12,а.

–44–

Рис.2.12

Оценим механическую характеристику по показателям устойчивости, жесткости и линейности.

Считается, что двигатель в разомкнутом приводе работает устойчиво, если после снятия возмущения он автоматически возвращается в исходную рабочую точку на механической характеристике. Механическая характеристика двигателя представляет собой зависимость угловой скорости ротора от электромагнитного момента: ω2=f(Mэм).Механической характеристикой нагрузки является зависимость

–45–

статического момента сопротивления на валу двигателя от угловой

скорости: Мст = f(ω2).

Теоретически установившийся режим работы двигателя возможен в точках А1 и А2, где МэмстА. Пусть двигатель работает с нагрузкой МстА=const в точке А1 и появляется возмущение, приводящее к увеличению угловой скорости ω2. Тогда двигатель создает вращающий момент, соответствующий точке A′1, а нагрузка – момент сопротивления, соответствующий точке A1. При этом Мэмст, в соответствии с уравнением равновесия моментов угловая скорость ω2 уменьшается и двигатель возвращается в точку А1. Возврат в точку А1 будет происходить и при отрицательном приращении скорости (точка А′′1 ). Если двигатель работает c нагрузкой в точке A2, то при возмущении, приводящем к увеличению скорости, двигатель создает вращающий момент, соответствующий точке A′2, а нагрузка – момент сопротивления, соответствующий точке A2. При этом Мэмст и угловая скорость продолжает увеличиваться, двигатель уходит от точки А2. Возврата в точку А2 не происходит и при отрицательном приращении скорости (точка А′′2 ). В этом случае скорость будет продолжать уменьшаться вплоть до остановки двигателя.

Следовательно в точке А1 двигатель работает устойчиво, а в точке А2

– неустойчиво. В общем случае, формальным признаком устойчивой

работы двигателя является неравенство

 

(dMэм/ dω2) < (dМcт /dω2) .

(2.30)

При моменте нагрузки, не зависящем от скорости, т.е. при Мст=const,

это неравенство принимает вид

 

(dω2/dМэм)<0 .

(2.31)

Исходя из понятия устойчивости работы двигателя в разомкнутом приводе, принято называть механическую характеристику двигателя устойчивой, если она обеспечивает устойчивую работу двигателя при Мст=const.

Если воспользоваться формальным признаком устойчивости (2.31), то легко показать, что при Мст=const устойчивая работа двигателя обеспечивается только на участке от ω1 до ω2кр Участок от ω2.кр до 0 является неустойчивым. Рабочий диапазон моментов и скоростей электроприводов с асинхронными двигателями выбирается в пределах устойчивой части механической характеристики двигателя. Точка номинальной нагрузки Мном располагается на рабочем участке таким образом, чтобы перегрузочная способность Кm = Мmax / Мном = 1,7 – 3,5. При малом сопротивлении ротора R2 критическая скорость ω2.кр=(0,8 – 0,9)ω1 и рабочий участок жесткий. Механическая характеристика в целом нелинейная, но ее рабочий участок близок к линейному.

–46–

В пределах рабочего участка происходит саморегулирование двигателя. Увеличение момента сопротивления на валу двигателя от Мст.в до Мст.с приводит к уменьшению угловой скорости ротора от ωдо ω2c, увеличению ЭДС и тока, наводимых в роторе вращающимся полем, и, соответственно, росту электромагнитного момента до значения, равного новому значению момента сопротивления (переход из точки В в точку С на механической характеристике).

Рабочие характеристики. Рабочие характеристики асинхронного двигателя - это зависимости угловой скорости ротора ω2, полезного момента М2, КПД η, коэффициента мощности cosϕ1 ( ϕ1 - сдвиг по фазе

между U1 и I1) и тока статора I1 от полезной мощности Р2 при U1 = Uном и f1 = fном (рис. 2.12,б). Рабочие характеристики могут быть либо сняты

экспериментально, либо рассчитаны с использованием схемы замещения. При переходе от режима х.х. (двигатель не нагружен) к режиму номинальной нагрузки угловая скорость ротора снижается незначительно, т.к. ω2=(1 - s)ω1, а Sном, как отмечалось, составляет единицы процентов. Соответственно, полезный момент М2= P22 возрастает по закону, близкому к линейному. Изменение тока статора определяется реакцией ротора; относительно большое значение тока при холостом ходе объясняется наличием воздушного зазора. Ток х.х. в основном индуктивный, и соответственно низок соsϕ10 порядка 0,1 – 0,2. По мере роста нагрузки возрастает потребляемая активная электрическая мощность и cosϕ1 растет – его максимальное значение достигает 0,7-0,9. Ток сохраняет активно-индуктивный характер ( ϕ1>0 ) и питающая сеть загружается реактивным током. КПД двигателя η= Р2 1, где Р1 – активная электрическая мощность, потребляемая двигателем. При симметричном питании Р1 = m1U1I1cosϕ1, где U1, I1 фазные напряжение

и ток. Зависимость КПД от мощности Р2 1 - pэ - pм - pмех имеет такой же вид, как и у трансформатора, т.к. в двигателе потери также

подразделяются на постоянные и переменные. Для машин малой и средней мощности максимальное значение КПД η = 0,7–0,9, при этом меньшие значения относятся к двигателям меньшей мощности, у которых относительно больше активное сопротивление обмоток.

§ 2.5. Пуск, реверсирование и торможение асинхронных двигателей Пуск. Условием пуска двигателя является неравенство Мпст ; если это условие выполняется, то при включении двигателя в сеть ротор приходит в движение и разгоняется до установившегося режима. При пуске ( ω2 = 0, S =1) ток в роторе достигает наибольшего значения (см. (2.15)). Соответственно велики пусковые токи и в обмотке статора, электродинамические усилия, действующие на обмотку, токовые перегрузки в питающей сети.

–47–

Уасинхронных двигателей малой мощности и специальных двигателей с повышенным критическим скольжением обычно кратность

пускового тока Кiп=< 6 и допускается непосредственное включение двигателя в сеть. Если Кiп > 6 или требуется более сильно ограничить пусковой ток, то приходится применять специальные способы пуска. У двигателей с короткозамкнутым ротором это в основном способы пуска при пониженном напряжении питания. По мере разгона ротора токи в обмотках уменьшаются и напряжение может быть повышено до номинального значения. Недостатком способов пуска при пониженном напряжении является то, что пропорционально квадрату фазного напряжения уменьшается пусковой момент (см. (2.22)).

Удвигателей с рабочей схемой соединения обмоток статора в “треугольник” возможен пуск переключением со “звезды” на “треугольник”. Пуск происходит при соединении обмоток статора в

“звезду”. Фазные напряжения и токи в 3 раз, а линейный ток в 3 раза меньше, чем при прямом пуске на схеме “треугольник”. После разгона обмотки статора переключают на рабочую схему “треугольник”. Однако, как уже отмечалось, уменьшается и пусковой момент – в 3 раза.

Удвигателей с контактными кольцами чаще применяется р е о с т а

тн ы й способ пуска, основанный на изменении добавочного активного сопротивления – пускового реостата R, включаемого в цепь ротора (рис. 2.13,a).

а)

б)

 

Рис.2.13

Включение в цепь ротора активного сопротивления уменьшает ток в роторе и одновременно, как показано на рис. 2.13,б, увеличивает пусковой

момент: при RПD > RПС > RПB > RПА пусковой момент МпD > МпC > МпB > МпA. Пуск осуществляют путем постепенного, обычно ступенчатого,

уменьшения сопротивления Rп (жирные линии на рис. 2.13,б). Максимальное значение сопротивления Rп и его ступени ( RпA, RпB, RпC,

–48–

RпD ) выбирают так, чтобы пики тока не превышали допустимых и пусковой момент Мп был больше момента сопротивления Мст. Однако эти двигатели более сложные и дорогие и их целесообразно применять только при тяжелых условиях пуска, когда необходим максимальный пусковой момент и мала мощность питающей сети.

Более современным способом пуска двигателя с контактными кольцами, основанным на изменении добавочного активного сопротивления в цепи ротора, является и м п у л ь с н ы й способ (рис. 2.14,а),

Рис.2.14

Пусковое сопротивление Rп подсоединяют последовательно к обмотке ротора через неуправляемый выпрямитель В. Периодическое подключение Rп производится силовым тиристором Т. Если тиристор Т включен, его сопротивление практически равно нулю, т.е. Rп шунтируется. Если тиристор Т отключен, его сопротивление существенно больше сопротивления Rп и можно считать, что цепь ротора по тиристору разомкнута, а замкнута через сопротивление Rп. Это можно представить как подключение к цепи ротора некоторого пускового сопротивления, среднее значение которого изменяется при изменении относительной продолжительности ε включения тиристора: Rп.cp = Rп (1- ε ) (рис.2.14.б),

где ε = tи /Tи.

Относительная продолжительность может изменяться от I до 0, соответственно, Rп.cp - от 0 до Rп. Семейство механических характеристик при различной скважности будет иметь такой же вид, что и при обычном реостатном пуске (см. рис. 2.13,6), причем характеристике RпА = 0 соответствует ε =1, характеристике RпD = Rп соответствует ε =0.

–49–

Преимущества рассмотренного импульсного способа по сравнению с обычным реостатным заключается прежде всего в том, что пуск может быть плавным и что способ удобен для реализации автоматического пуска.

Реверсирование двигателя. Изменение направления вращения ротора осуществляется изменением направления вращения поля статора. Для этого достаточно поменять местами выводы двух любых фаз.

Торможение двигателя. Для быстрой остановки двигателя могут применяться различные способы электрического торможения: рекуперативное, торможение противовключением и динамическое торможение.

Рекуперативное торможение происходит при работе асинхронной машины в режиме генератора параллельно с сетью, т.е. при ω2 > ω1 (см. рис. 2.9,б). На практике этот режим встречается в основном при переходе с высших угловыхскоростей на низшие, например, при изменении числа пар полюсов или частоты напряжения питания.

Торможение противовключением происходит в том случае, когда магнитное поле статора вращается в одном направлении, а ротор в противоположном. При этом угловая скорость ротора и создаваемый двигателем момент имеют противоположные знаки. Основным способом перевода работающего двигателя в этот режим является переключение любых двух фаз статора. При этом изменяется направление вращения магнитного поля и двигатель переходит из точки А (рис.2.15,а; характеристика I) в точку В (характеристика2).

–50–

Рис.2.15

Электромагнитный момент Мэм изменяет знак, т.е. становится тормозным, и угловая скорость ротора, продолжающего по инерции вращаться в прежнем направлении, быстро уменьшается. Если в точке С двигатель отключить от сети, ротор остановится. В противном случае произойдет реверсирование двигателя - ротор начнет вращаться в противоположном направлении и перейдет в установившийся режим в точке D.

Реверсирование или торможение противовключением асинхронных двигателей с контактными кольцами средней и большой мощности осуществляется с одновременным подключением к цепи ротора дополнительного активного сопротивления с целью ограничения чрезмерно больших токов.

Динамическое торможение осуществляется отключением обмотки статора от сети переменного тока и подключением к сети постоянного тока