Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты Эгзамен / Механика 20-29.docx
Скачиваний:
0
Добавлен:
26.01.2024
Размер:
434.49 Кб
Скачать

Билет 24. Космические Скорости

Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) — это минимальная скорость, при которой какое-либо тело в свободном движении с поверхности небесного тела сможет:

  • v1 (круговая скорость) — стать спутником небесного тела (то есть вращаться по круговой орбите вокруг НТ на нулевой или пренебрежимо малой высоте относительно поверхности);

  • v2 (параболическая скорость, скорость убегания) — преодолеть гравитационное притяжение небесного тела и уйти на бесконечность;

  • v3 — покинуть звёздную систему, преодолев притяжение звезды;

  • v4 — покинуть галактику.

Третья и четвёртая космические скорости используются редко. Вторая космическая скорость обычно определяется в предположении отсутствия каких-либо других небесных тел (например, для Луны скорость убегания равна 2,4 км/с, несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики).

Между первой и второй космическими скоростями существует простое соотношение:

Квадрат круговой скорости (первой космической скорости) с точностью до знака равен ньютоновскому потенциалу Φ на поверхности небесного тела (при выборе нулевого потенциала на бесконечности):

где M — масса планеты, R — радиус небесного тела, G — гравитационная постоянная.

Квадрат скорости убегания (второй космической скорости) равен удвоенному ньютоновскому потенциалу, взятому с обратным знаком:

Пе́рвая косми́ческая ско́рость (кругова́я ско́рость) — минимальная скорость, которую необходимо придать объекту, чтобы вывести его на геоцентрическую орбиту. Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

В инерциальной системе отсчёта на объект, движущийся по круговой орбите вокруг Земли будет действовать только одна сила — сила тяготения Земли. При этом движение объекта не будет ни равномерным, ни равноускоренным. Происходит это потому, что скорость и ускорение (величины не скалярные, а векторные) в данном случае не удовлетворяют условиям равномерности/равноускоренности движения — то есть движения с постоянной (по величине и направлению) скоростью/ускорением. Действительно — вектор скорости будет постоянно направлен по касательной к поверхности Земли, а вектор ускорения — перпендикулярно ему к центру Земли, при этом по мере движения по орбите эти векторы постоянно будут менять свое направление. Поэтому в инерциальной системе отсчета такое движение часто называют «движение по круговой орбите с постоянной по модулю скоростью».

Часто для удобства вычисления первой космической скорости переходят к рассмотрению этого движения в неинерциальной системе отсчета — относительно Земли. В этом случае объект на орбите будет находиться в состоянии покоя, так как на него будут действовать уже две силы: центробежная сила и сила тяготения. Соответственно, для вычисления первой космической скорости необходимо рассмотреть равенство этих сил.

Точнее, на тело действует одна сила - сила тяготения, она же - центростремительная. Центробежная сила действует на Землю. Центростремительная сила, вычисляемая из условия вращательного движения равна силе тяготения. Отсюда, приравнивая эти формулы, вычисляется скорость.

,

,

где m — масса объекта, M — масса планеты, G — гравитационная постоянная,  — первая космическая скорость, R — радиус планеты. Подставляя численные значения (для ЗемлиM = 5,97·1024 кг, R = 6 371 км), найдем

 7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения. Поскольку  , то

Втора́я косми́ческая ско́рость (параболи́ческая ско́рость, ско́рость освобожде́ния, ско́рость убега́ния) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала по сравнению с массой небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела и покидания замкнутой орбиты вокруг него. Предполагается, что после приобретения телом этой скорости оно более не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой. Для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца. Для Солнца вторая космическая скорость составляет 617,7 км/с.

Параболической вторая космическая скорость называется потому, что тела, имеющие при старте скорость, в точности равную второй космической, движутся по дуге параболы относительно небесного тела. Однако, если энергии телу придано чуть больше, его траектория перестает быть параболой и становится гиперболой; если чуть меньше, то она превращается в эллипс. В общем случае все они являются коническими сечениями.

Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё избесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния.

Запишем затем закон сохранения энергии

где слева стоят кинетическая и потенциальная энергии на поверхности планеты (потенциальная энергия отрицательна, так как точка отсчета взята на бесконечности), справа то же, но на бесконечности (покоящееся тело на границе гравитационного влияния — энергия равна нулю). Здесь m — масса пробного тела, M — масса планеты, R — радиус планеты, G —гравитационная постоянная, v — вторая космическая скорость.

Решая это уравнение относительно v2, получим

Между первой и второй космическими скоростями существует простое соотношение:

Квадрат скорости убегания равен удвоенному ньютоновскому потенциалу в данной точке (например, на поверхности небесного тела):

Тре́тья косми́ческая ско́рость — минимальная скорость, которую необходимо придать находящемуся вблизи поверхности Земли телу, чтобы оно могло преодолеть гравитационное притяжение Земли и Солнца и покинуть пределы Солнечной системы[1].

Для расчёта третьей космической скорости можно воспользоваться следующей формулой[2]:

где v3 — третья космическая скорость, v1 — первая космическая скорость для Солнца, v2 — вторая космическая скорость для планеты.

Четвёртая косми́ческая ско́рость — минимально необходимая скорость тела, позволяющая преодолеть притяжение галактикив данной точке.

Четвёртая космическая скорость не постоянна для всех точек галактики, а зависит от координаты. По оценкам, в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра Галактики, но и от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса. Вне диска Галактики распределение масс приблизительно сферически симметрично, как следует из измерений скоростей шаровых скоплений и других объектов сферической подсистемы.

Четвертая космическая скорость численно равна квадратному корню из гравитационного потенциала в данной точке галактики (если выбрать гравитационный потенциал равным нулю на бесконечности): ,где φ — гравитационный потенциал.

Соседние файлы в папке Билеты Эгзамен