Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
11.11 биос.docx
Скачиваний:
52
Добавлен:
18.11.2020
Размер:
241.78 Кб
Скачать

6. Генные мутации – изменение нуклеотидной последовательности днк одного гена.

Генные мутации происходят при репликации ДНК, кроссинговере, возможны в остальные периоды клеточного цикла. Механизмы репарации не всегда устраняют мутации и повреждения ДНК. Кроме того сами могут служить источником генных мутаций. Например, при объединении концов разорванной хромосомы часто теряется несколько нуклеотидных пар. Если системы репарации перестают нормально функционировать, то происходит быстрое накопление мутаций. Если мутации возникают в генах, кодирующих ферменты репарации, то может нарушится работа одного или нескольких его механизмов, в результате чего количество мутаций сильно возрастет. Однако иногда бывает обратный эффект, когда мутация генов ферментов репарации приводит к снижению частоты мутаций других генов. Помимо первичных мутаций в клетках могут происходить и обратные, восстанавливающие исходный ген.

Большинство генных изменений, как и мутаций двух других видов, вредны. Появление мутаций, обусловливающих полезные признаки для определенных условий среды, происходит редко. Однако именно они делают возможным процесс эволюции.

По характеру влияния на процессы транскрипции и трансляции выделяют три основные категории генных мутаций:

1)миссенс-мутации (транзиции, трансверсии). Возникают при замене нуклеотида внутри кодона. Это приводит к вставке на определенном месте в цепи полипептида иной аминокислоты. В результате может измениться физиологическая роль белка, что создает фон для действия естественного отбора;

2) нонсенс-мутации (транзиции, трансверсии) — появление внутри гена концевых кодонов за счет замены отдельных оснований в пределах кодонов. В результате процесс трансляции обрывается в месте появления терминального кодона;

3) мутации сдвига рамки чтения. Возникают при появлении внутри гена вставок оснований и делеций. Это приводит к изменению смыслового прочтения информации гена в процессах синтеза белка вследствие новых комбинаций оснований в триплетах, так как триплеты после выпадения или вставки приобретают новый, состав кодона из-за сдвига на одно основание. В результате вся цепь полипептида после генной мутации в ДНК получает иные аминокислоты. Мутации, возникающие у животных, имеют разную судьбу. Часть прямых мутаций может нивелироваться обратными изменениями генов. В результате обратных мутаций полностью или частично восстанавливается активность мутантного гена. Обратные мутации возникают редко.

7. Хромосомные мтуации: понятие, виды, значение.

Хромосомные мутации – изменения, касающиеся участков внутри одной хромосомы. В основе изменения структуры хромосомы, как правило, лежит первоначальное нарушение ее целостности — разрывы, которые сопровождаются различными межгенными перестройками.

Разрывы хромосом происходят закономерно в ходе кроссинговера, когда они сопровождаются обменом соответствующими участками между гомологами. Нарушение кроссинговера, при котором хромосомы обмениваются неравноценным генетическим материалом, приводит к появлению новых групп сцепления. Разрывы хромосом могут возникать также под влиянием различных мутагенных факторов, главным образом физических (ионизирующего и других видов излучения), некоторых химических соединений, вирусов.

Они делятся на две группы: внутрихромосомные и межхромосомные.

Внутрихромосомные мутации подразделяют на следующие типы.

1) Дефишенси (концевые нехватки); Пример: синдром кошачьего крика у человека связан кс концевой нехваткой в одной из 5 пары хромосом.

2) Делеции (нехватки внутренних частей хромосом). В результате нехваток некоторые гены в кариотипе остаются в гемизиготном состоянии, что может привести к фенотипическому проявлению рецессивных аллелей.

В ряде случаев возможно появление новых признаков в результате нехваток.

3) Дупликации (удвоения) и амплификации (многократные умножения части хромосомы). Основным механизмом образования дупликаций является неравный кроссинговер, в результате которого хромосомы обмениваются неодинаковыми по размеру участками.

4) Нарушение целостности хромосомы может сопровождаться поворотом ее участка, находящегося между двумя разрывами, на 180° — инверсия. Наиболее часто встречающийся в природных популяциях тип хромосомных перестроек. Разделяются на перицентрические (захватывающие центромеру) и парацентрические (не включающие центромеру в инвентированый участок). Генетически инверсии проявляются как запиратель кроссинговера, если инверсия находиться в гетерозиготе. Строго говоря, кроссинговер у гетерозигот не подавлен, однако последствия его ведут к образованию нежизнеспособных спор у растений или зигот у животных, так как в результате одинарного кроссинговера из пары конъюгирующих гомологичных хромосом образуются одна дицентрическая, а другая ацентрическая хромосомы, которые затем элиминируют. Поэтому из четырех хроматид, нормальные гаметы образуют лишь две, не вступавшие в кроссинговер.

Внутрихромосомные перестройки (кроме дупликаций) обычно летальны в гомозиготном состоянии, т.к. часто точки разрывов затрагивают жизненно важные гены или вследствие “эффекта положения” (гены в новом локусе хромосом перестают нормально функционировать). Нелетальны в гомозиготе лишь некоторые очень малые изменения (микроделеции и микроинверсии). Цитогенетически делеции определяются по образованию одинарных петель в пахитене и мостов между гомологами в анафазе мейоза, инверсии по образованию двойных петель, дефишенси диагностируются по различиям в длине гомологичных хромосом. Дупликации (и амплификации) идентифицируются на гигантских хромосомах слюнных желез дрозофилы по тщательному анализу хромомерного рисунка.

К межхромосомным перестройкам относят:

транслокации – перемещения части одной хромосомы на другую (негомологичную ей), которые возникают в результате реципрокного обмена участками негомологичных хромосом. Генетически они дифференцируются по изменению групп сцепления: гены, наследовавшиеся независимо, вдруг начинают наследоваться сцеплено. Цитологически - по возникновению петель в бивалентах обоих хромосом, между которыми произошла транслокация). Одним из вариантов транслокаций являются т.н. робертсоновские транслокации, приводящие к слиянию двух центромер акроцентрических хромосом, с образованием хромосомы имеющей два плеча (общее число хромосом в геноме уменьшается на одну).

П ромежуточное положение между межхромосомными и внутрихромосомными перестройками занимают транспозиции – изменения локализации небольших участков генетического материала, включающих один или несколько генов. Транспозиции могут происходить как между негомологичными хромосомами, так и в пределах одной хромосомы. При этом реципрокного обмена между генами не происходит. Осуществляются с помощью мигрирующих генетических элементов (транспозонов), которые могут переносить участки хромосом и реципрокно встраиваться в определенные сайты генома, где расположены копии соответствующих транспозонов.

делеция – выпадение участка хромосомы

дупликация – удвоение какого-то участка хромосом

-  инверсия – поворот участка хромосомы на 1800, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с нормой

транслокация – перемещение какого либо участка хромосомы в другое место

При делециях и дупликациях изменяется общее количество генетического материала, степень фенотипического проявления этих мутаций зависит от размеров изменяемых участков, а также от того, насколько важные гены попали в эти участки.

При инверсиях и транслокациях изменение количества генетического материала не происходит, изменяется лишь его расположение. Подобные мутации нужны эволюционно, так как мутанты часто уже не могут скрещиваться с исходными особями.

Таким образом, изменения хромосомной организации, чаще всего оказывающие неблагоприятное воздействие на жизнеспособность клетки и организма, с определенной вероятностью могут быть перспективными, наследоваться в ряду поколений клеток и организмов и создавать предпосылки для эволюции хромосомной организации наследственного материала. Фенотипический эффект хромосомных перестроек наблюдается очень часто. Это объясняется “эффектом положения”, который заключается в изменении фенотипа, вследствие того, что переместившиеся гены оказываются в новом генотипическом окружении. Данное явление показывает важную роль системы генотипа в определении признаков.

Соседние файлы в предмете Биология