Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ХУ Собранные.doc
Скачиваний:
23
Добавлен:
28.09.2019
Размер:
2.6 Mб
Скачать

1 4. Схема охлаждения с помощью промежуточного хладоносителя.

1. Схема с открытыми охл-щими приборами и открытыми испарителями.

Охл-ный Хл/н забирается Н и подаётся в В/охл открытого типа. Наличие обратного клапана за Н позволяет пускать в работу Н с открытой задвижкой на всасывании и нагнетании. ОК позволяет предотвратить слив ж-ти из нагн. Тр/пр насоса в испаритель при остановке насоса. Обводной мост предназначен для слива Хл/н из нагн. линии Н при ремонте. Хл/н поступает в В/охл, разбрызгивается и отепляется за счёт охл-ния в-ха, непосредственно контактирующего с ним. Из поддонов В/охл Хл//н самотёком сливается в бак дополнительной ёмкости. На сливных линиях в/охл и сливном общем (магистральном) тр/пр задвижкм не ставятся во избежание переполнения поддонов В/охл-лей Хл/н в испарителе как при работе так и при остановке Н. Бак имеет 2 отсека: Больший и меньший. Меньший отсек в нижней части соединён с баком

испарителя уравнительной трубой,благодаря чему они является

сообщающимися сосудами. В верхней части они соединяются переливной трубой для слива избытка Хл/н. при остановке Н весь Хл/н из поддонов В/О и сливных труб сливается в малый отсек, а затем через перегородку которая расположена ниже переливной трубы в больший отсек. При послед. Пуске Н Хл/н забирается из большего отсека бака, а затем переключается на бак испарителя.

Недостатки: 1. повышенный расход Эл/эн на привод Н; 2. Установка бака дополнительной ёмкости; 3. Испаритель должен располагаться ниже охлаждающих приборов, т.к. обратная линия самотёчная; 4. Необходимость регулирования равномерности раздачи Хл/н по охлаждающим приборам, т.к. гидравлическое сопротивление пути к нижнему м верхнему В/О не одинаково; 5. Повышенная коррозия системы; 6. Возможность деконцентрации раствора; 7. Необходимость устройства отдельного от КМ цеха помещения.

Достоинства: 1. Возможность использования мокрых В/О; 2 В открытых испарителях: а) Хл/н доступен для контроля и наблюдения; б) менее значимы последствия замерзания.

2. Схема с закр. Охл. приборами 3. Схема с закр. ОП и закрытым И. I, II, III – тр/пр заполне

и открытым испарителем. ны Хл/н. Для того чтобы это сохранялось при всех возмож-

Устраняет 2,5,6,7-й недостаток. ных изменениях тем-ры Хл/н предусматривается установка

Р асширительного Бака. РБ уст-ся в точке

нулевого избыточного давления в

системе,что необходимо для

предотвращения подъёма уровня

ж-ти при пуске Н. С изменением тем-ры изменяется объём Хл/н. При наличии РБ изменение объёма ж-ти в системе компенсируется изменением уровня в Уравнительном баке. Наличие 3-х тр/пр позволяет обеспечить равномерную раздачу Хл/н по охл-щим приборам.

15. Влияние присутствия смазочного масла и воздуха в системе на работу холодильной установки. Влияние присутствия воды и механических загрязнений в системе на работу холодильной установки.

Пар хладагента, выходящий из поршневого, ротационного и винтового маслозаполненного компрессоров, всегда уносит с собой частицы смазочного масла. Масло увлекается паром как в виде мелкодисперсных частиц, так и в парообразном состоянии, поскольку при температурах, какие могут быть при сжатии хладагента в компрессоре, испаряются некоторые фракции масла.

Расчетные и опытные данные позволяют утверждать, что вместе с паром хладагента могут уноситься масляные капли диаметром 1 мм и даже крупнее. На количество масла, уносимого из компрессора, влияют его техническое состояние и способ смазки.

Характер влияния, оказываемого маслом, унесенным из компрессора, на процесс в теплообменных аппаратах установки, зависит от взаимной растворимости хладагента и масла. Степень взаимной растворимости различна и связана с химическим сродством смешиваемых веществ. Неограниченно растворяются друг в друге жидкости, имеющие внутреннее давление одного порядка. В противном случае возможна только ограниченная растворимость.

Растворимость жидких хладагентов в маслах повышается с возрастанием температуры. Такие растворы имеют верхнюю критическую температуру растворимости tK (точка К на рис.а ) На (рис. а), линия I является графиком растворимости масла в хладагенте, а линия II — графиком растворимости хладагента в масле. Здесь можно видеть три зоны различной растворимости. Первая зона находится выше температуры tK; при этих температурах хладагент и масло взаимно растворяются в любых пропорциях с образованием однородного раствора. Вторая зона находится при температурах ниже tK, слева от линий I и справа от линии II; эта область ограниченной растворимости, и в ней концентрации возможных однородных растворов ограничены положением линий I и II. Между этими линиями образована третья область, называемая зоной несмесимости. Внутри ее располагаются смеси, состоящие из двух однородных растворов. Состав каждого из растворов определяется при данной температуре t1 абсциссами точек на линиях I и II. Так, точка 1 характеризует смесь с содержанием масла £1 и хладагента 1—£1. Такая смесь разделяется на два однородных раствора, один из которых характеризуется точкой а и представляет собой раствор масла £А в хладагенте1 - £А, а другой характеризуется точкой Ь и является раствором хладагента 1 - £b в масле £b Относительные количества каждого из веществ могут быть найдены по правилу рычага: Gа/Gb = (1 - Ь)/(1 - а).

График взаимной растворимости жидких хладагентов.

Аммиак плохо растворяется в минеральных, традиционных синтетических и новых полиэфирных маслах, но хорошо растворяется в полиальфагликолевых маслах.

Если в аппарате хладагент и масло ограниченно растворяются друг в друге, то один из растворов, представляющий собой почти чистое масло, оседает в виде пленки на теплопередающей поверхности аппарата. Масляная пленка оказывается дополнительным термическим сопротивлением, уменьшающим коэффициент теплопередачи аппарата, в результате чего (при той же тепловой нагрузке) возрастает разность температур теплообменивающихся сред. Замасливание теплопередающей поверхности конденсатора вызывает повышение температуры конденсации, а замасливание поверхности испарителя — понижение температуры кипения при прочих равных условиях. В результате понижается холодопроизводительность установки и растет расход энергии на производство холода, что делает необходимым очистку пара хладагента от масла, чтобы воспрепятствовать попаданию масла в теплообменные аппараты и понижению эффективности их работы.

Скопление масла в испарителе оказывается нежелательным еще и потому, что на соответствующее значение уменьшается количество масла в компрессоре, вследствие чего нарушаются условия смазки его трущихся деталей.

Вода находится в системе вместе с хладагентом обычно в очень небольшом количестве, но несмотря на это может создавать определенные трудности, которые приходится учитывать при проектировании и эксплуатации холодильных установок.

Одной из причин неполадок, связанных с наличием в системе влаги, является замерзание нерастворенной воды при дросселировании хладагента. Особенно большое значение имеет это явление в малых автоматизированных установках, в которых образовавшиеся частицы льда при малых диаметрах отверстий вентилей, сопел, капиллярных трубок забивают проходное сечение дроссельных устройств и нарушают режим работы установки.

Присутствие воды в хладагентах способствует коррозии металлов. Даже небольшие примеси воды способствуют образованию слабых кислот или щелочей, обладающих определенной химической активностью.

Воздух попадает в систему холодильной установки различными путями: некоторое количество воздуха остается при недостаточно тщательном его удалении после вскрытия системы; воздух проникает в компрессоры, аппараты и трубопроводы при понижении давления в системе ниже атмосферного давления через течи соединений и при высоком давлении в системе путем диффузии через пористые материалы прокладок и сальников.

Воздух влияет на повышение давления в конденсаторе, ухудшает теплопередачу от конденсирующегося пара к стенке трубы в связи с образованием газовой плёнки, уменьшение коэффициента теплопередачи конденсатора.

Механические примеси.

Причинами появления загрязнений являются: плохая очистка внутренних поверхностей оборудования после его изготовления от формовочного песка у литых деталей, от окалины и коррозии; плохая очистка и промывка поверхностей после монтажа и в процессе эксплуатации оборудования. Все эти загрязнения или смываются с поверхности жидким хладагентом, или увлекаются его паром, вследствие чего они могут перемещаться вместе с хладагентом по системе холодильной установки. Некоторые хладагенты (хладоны) в высокой степени обладают свойством смывать загрязнения с поверхности.

Наибольшую опасность для работы установки механические загрязнения создают в компрессоре, насосе и дроссельных устройствах. В компрессоре и насосе твердые частицы, попавшие между трущимися поверхностями, вызывают их нагревание, увеличенный расход энергии на трение и ускоренное изнашивание деталей, а иногда являются причиной и более серьезных отказов. В дроссельных устройствах малые отверстия и щели засоряются частицами, что влечет за собой уменьшение или полное прекращение подачи хладагента в испаритель.