Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
детали машин и основы.docx
Скачиваний:
56
Добавлен:
16.11.2019
Размер:
4.83 Mб
Скачать

2.4. Силы в зацеплении

Окружные силы в зацеплении вычисляют по вращающим мо­ментам (Н∙м) и делительным диаметрам da, db, dg (мм) зубчатых ко­лес (для передач без смещения):

,

где nwчисло сателлитов, kwкоэффи­циент, учитывающий неравномерность распределения нагрузки между сателли­тами (между потоками).

На рис. 2.3, а показаны силы, дейст­вующие на один из сателлитов. Ради­альные силы Frb =Ftatgaw и Frb = Ftb tgaw здесь уравновешены.

Рис. 2.3. Силы в зацеплениях сателлитов и методы их выравнивания:

а – силы в зацеплениях; б – многоугольник сил для центральных колес; в – шарнирная подвеска центральных колес

Если бы передача была совершенной (kw =1), окружные силы на колесе а в зацеплении со всеми сателлитами были бы одинаковы по величине: Fta1 = Fta2 = = F ta3 (тонкие линии многоугольника сил на рис. 2.3, б); в реальности силы распределены неравномерно (сказываются неточность изготовления, деформации под нагрузкой): Fta1 Fta2 F ta3 (жирные линии многоугольника сил на рис. 2.3, б). Равновесие обеспечивается уравновешивающей силой Fоп, возникающей в опоре центрального колеса. Значения коэффициента kw при этом значительно больше единицы. Для уменьшения неравномер­ности распределения момента и выравнивания окружных сил колесо а выполняют без опор («плавающим») и соединяют его с ведущим валом с помощью зубчатой муфты, которая дает возможность компенсировать вероятные радиальные смещения шестерни (рис. 2.3, в). В этом случае колесо а под действием силы Fоп, самоустанавливается, стре­мясь достичь равновесного положения, преодолевая действие сил трения и инерции. При этом значения коэффициента kw становятся значительно меньше – kw= 1,05 ... 1,15.

2.5. Особенности расчета планетарных передач

Расчет планетарных передач начинают с подбора чисел зубьев. Так как колеса взаимосвязаны, то наряду с выдержкой заданного передаточного отношения необходимо обеспечить следующие условия: соосности, симметричного расположения сателлитов, соседства.

Для приведенной выше схемы планетарной прямозубой передачи (рис. 2.1) без смещения эти условия достигаются выполнением следующих действий.

Число зубьев za центральной шестерни а задают из требования неподрезания ножки зуба: za 17. Принимают za =2124 для Н 350 НВ; za = 18…21 для 35 HRC < Н < 52 HRC и za = 17 при Н > 52 HRC.

Число зубьев zb неподвижного центрального колеса b опреде­ляют по заданному передаточному отношению ubah из формулы: .

Число зубьев zg сателлита g вычисляют из условия соосности. Условие соосности требует равенства межосевых расстояний различных пар зацепляющихся колес.

(2.4)

где d = mzделительный диаметр соответствующего зубчатого колеса. Так как модули зацеплений планетарной передачи одинаковы, то формула (2.4) принимает вид:

(2.5)

Полученные числа зубьев za, zg, и zb проверяют по условиям симметричного расположения сателлитов (условие сборки) и соседства.

Условие сборки симметричного расположения сателлитов требует, чтобы во всех зацеплениях централь­ных колес с сателлитами зубья одних совпадали с впадинами других (иначе собрать передачу нельзя). Проверено, что при симметричном расположении сателлитов условие сборки удовлетворяется, когда сумма зубьев центральных колес (za+zb) кратна числу сателлитов nw (обычно nw=3), т.е. (za + zb)/nw равно целому числу.

Условие соседства требует, чтобы сателлиты не задевали зубь­ями друг друга. Для этого необходимо, чтобы сумма радиусов вер­шин зубьев соседних сателлитов, равная dga = m(zg + 2), была меньше расстояния l между их осями (см. рис. 2.3), т.е.

(2.6)

где aw = 0,5sin(za + zg ) – межосевое расстояние.

Из формулы (2.6) следует, что условие соседства выполнено, когда