Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_k_ekzamenu_po_INFORMATIE_dlya_gruppy_Ek...doc
Скачиваний:
9
Добавлен:
22.09.2019
Размер:
528.9 Кб
Скачать

Доступ в Интернет по спутниковому каналу.

Возникает вопрос: как получить доступ, если вы живете в районе, удаленном от телефонных станций, и к вашему жилищу не проложено кабельного телевидения? В этом случае может помочь спутниковый доступ в Интернет. При этом вы не получите скоростей, соизмеримых с ADSL-доступом, однако скорость доступа может быть на порядок выше, чем по обычному модему через коммутируемую телефонную линию.Существует две разновидности организации высокоскоростного доступа в Интернет по спутниковому каналу: симметричная и асимметричная.В случае симметричного доступа клиент осуществляет передачу запроса на спутник и прием данных со спутника Подобное решение является достаточно дорогим как по части клиентского оборудования, так и по стоимости абонентской платы.В случае асимметричного доступа клиент осуществляет передачу запроса на получение требуемой информации по наземному каналу, а принимает информацию со спутника. Потоки данных при асимметричном доступе организуются следующим образом. Пользователь связывается с любым провайдером Интернета (региональный провайдер) через обычный телефонный модем Используя этот канал связи, он проходит авторизацию на сервере компании, обеспечивающей асимметричный спутниковый доступ в Интернет. После авторизации весь поток информации, поступающий в адрес пользователя из Интернета, направляется к нему не по обычной телефонной линии, а через спутниковый канал.Запросы на получение информации пользователь по-прежнему посылает по каналу запросов.

Сервисы

В настоящее время в Интернете существует достаточно большое количество сервисов, обеспечивающих работу со всем спектром ресурсов. Наиболее известными среди них являются:электронная почта (E-mail), обеспечивающая возможность обмена сообщениями одного человека с одним или несколькими абонентами;телеконференции, или группы новостей (Usenet), обеспечивающие возможность коллективного обмена сообщениями;сервис FTP — система файловых архивов, обеспечивающая хранение и пересылку файлов различных типов;сервис Telnet, предназначенный для управления удаленными компьютерами в терминальном режиме;World Wide Web (WWW, W3) — гипертекстовая (гипермедиа) система, предназначенная для интеграции различных сетевых ресурсов в единое информационное пространство;сервис DNS, или система доменных имен, обеспечивающий возможность использования для адресации узлов сети мнемонических имен вместо числовых адресов;сервис IRC, предназначенный для поддержки текстового общения в реальном времени (chat);Потоковое мультимедиа.Перечисленные выше сервисы относятся к стандартным. Это означает, что принципы построения клиентского и серверного программного обеспечения, а также протоколы взаимодействия сформулированы в виде международных стандартов. Следовательно, разработчики программного обеспечения при практической реализации обязаны выдерживать общие технические требования.Наряду со стандартными сервисами существуют и нестандартные, представляющие собой оригинальную разработку той или иной компании. В качестве примера можно привести различные системы типа Instant Messenger (своеобразные интернет-пейджеры — ICQ, AOl, Demos on-line и т. п.), системы интернет-телефонии, трансляции радио и видео и т. д. Важной особенностью таких систем является отсутствие международных стандартов, что может привести к возникновению технических конфликтов с другими подобными сервисами.Для стандартных сервисов также стандартизируется и интерфейс взаимодействия с протоколами транспортного уровня. В частности, за каждым программным сервером резервируются стандартные номера TCP- и UDP-портов, которые остаются неизменными независимо от особенностей той или иной фирменной реализации как компонентов сервиса, так и транспортных протоколов. Номера портов клиентского программного обеспечения так жестко не регламентируются. Это объясняется следующими факторами:во-первых, на пользовательском узле может функционировать несколько копий клиентской программы, и каждая из них должна однозначно идентифицироваться транспортным протоколом, то есть за каждой копией должен быть закреплен свой уникальный номер порта;во-вторых, клиенту важна регламентация портов сервера, чтобы знать, куда направлять запрос, а сервер сможет ответить клиенту, узнав адрес из поступившего запроса.

23.Основы и методы защиты информации. Юридические основы информационной безопасности. Криптографические методы защиты данных. Защита информации от компьютерных вирусов.

Юридические основы информационной безопасности. Широкое распространение КС и сетей, внедрение их в государственных учреждениях и важность задачи сохранения конфиденциальности государственной и частной информации заставили многие страны принять соответствующие законы, регламентирующие защиту КС и сетей. Наиболее общим законом Российской Федерации является Конституция. Главы 23, 29, 41 и 42 в той или иной мере затрагивают вопросы информационной безопасности. Статья 23 Конституции, например, гарантирует право на личную и семейную тайну, на тайну переписки, телефонных разговоров, почтовых, телеграфных и иных сообщений; статья 29 - право свободно искать, получать, передавать, производить и распространять информацию любым законным способом. Главы 41 и 42 гарантируют право на знание фактов и обстоятельств, создающих угрозу жизни и здоровью людей, право на знание достоверной информации о состоянии окружающей среды. Действующий Уголовный кодекс Российской Федерации предусматривает наказания за преступления, связанные с нарушением конфиденциальности информации. Глава 28 "Преступления в сфере компьютерной информации" содержит статьи 272-274, посвященные преступлениям, связанным, соответственно, с неправомерным доступом к компьютерной информации, созданием, использованием и распространением вредоносных программ, нарушением правил эксплуатации ЭВМ, систем и сетей на их основе. Интересы государства в плане обеспечения конфиденциальности информации наиболее полно представлены в Законе "О государственной тайне". В нем гостайна определена как защищаемые государством сведения в области военной, внешнеполитической, экономической, разведывательной, контрразведывательной и оперативно-розыскной деятельности, распространение которых может нанести ущерб безопасности Российской Федерации. Здесь же дается описание средств защиты информации, к которым, согласно данному Закону, относятся технические, криптографические, программные и другие средства, предназначенные для защиты сведений, составляющих государственную тайну. Наряду с общими законами, во многих странах приняты законы о защите информации в компьютерных системах и сетях. Описание основных положений этих законов, принятых в США и РФ, приведены ниже.

Защита информации – комплекс мероприятий, направленных на обеспечение целостности, доступности и, если нужно, конфиденциальности информации и ресурсов, используемых для ввода, хранения, обработки и передачи данных.

На сегодняшний день сформулировано два базовых принципа по защите информации:

целостность данных – защита от сбоев, ведущих к потере информации, а также защита от неавторизованного создания или уничтожения данных;конфиденциальность информации.

Защита от сбоев, ведущих к потере информации, ведется в направлении повышения надежности отдельных элементов и систем, осуществляющих ввод, хранение, обработку и передачу данных, дублирования и резервирования отдельных элементов и систем, использования различных, в том числе автономных, источников питания, повышения уровня квалификации пользователей, защиты от непреднамеренных (ошибочных) и преднамеренных действий, ведущих к выходу из строя аппаратуры, уничтожению или изменению (модификации) программного обеспечения и защищаемой информации.

Защита от неавторизованного создания или уничтожения данных обеспечивается физической защитой информации, разграничением и ограничением доступа к элементам защищаемой информации, закрытием защищаемой информации в процессе непосредственной ее обработки, разработкой программно-аппаратных комплексов, устройств и специализированного программного обеспечения для предупреждения несанкционированного доступа к защищаемой информации.Конфиденциальность информации обеспечивается идентификацией и проверкой подлинности субъектов доступа при входе в систему по идентификатору (коду) и паролю, идентификацией внешних устройств по физическим адресам, идентификацией программ, томов, каталогов, файлов по именам, шифрованием и дешифрованием информации, разграничением и контролем доступа к ней.Среди мер, направленных на защиту информации основными являются технические, организационные и правовые.К техническим мерам можно отнести защиту от несанкционированного доступа к системе, резервирование особо важных компьютерных подсистем, организацию вычислительных сетей с возможностью перераспределения ресурсов в случае нарушения работоспособности отдельных звеньев, установку резервных систем электропитания, оснащение помещений замками, установку сигнализации и др.К организационным мерам относятся: охрана вычислительного центра (кабинетов информатики); заключение договора на обслуживание компьютерной техники с солидной, имеющей хорошую репутацию организацией; исключение возможности работы на компьютерной технике посторонних, случайных лиц и т.п.

К правовым мерам относятся разработка норм, устанавливающих ответственность за вывод из строя компьютерной техники и уничтожение (изменение) программного обеспечения, общественный контроль за разработчиками и пользователями компьютерных систем и программ.Следует подчеркнуть, что никакие аппаратные, программные и любые другие решения не смогут гарантировать абсолютную надежность и безопасность данных в компьютерных системах. В то же время свести риск потерь к минимуму возможно, но лишь при комплексном подходе к защите информации.В следующих вопросах и темах мы рассмотрим проблемы защиты информации в автоматизированных системах обработки данных, особенности защиты информации в ПЭВМ, использование специализированного программного обеспечения для архивации данных и борьбе с компьютерными вирусами, а также основы криптографической защиты информации.

Криптографические методы защиты информации - это специальные методы шифрования, кодирования или иного преобразования информации, в результате которого ее содержание становится недоступным без предъявления ключа криптограммы и обратного преобразования. Криптографический метод защиты, безусловно, самый надежный метод защиты, так как охраняется непосредственно сама информация, а не доступ к ней (например, зашифрованный файл нельзя прочесть даже в случае кражи носителя). Данный метод защиты реализуется в виде программ или пакетов программ.Современная криптография включает в себя четыре крупных раздела:Симметричные криптосистемы. В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ. (Шифрование - преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шифрованным текстом, дешифрование - обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный);Криптосистемы с открытым ключом. В системах с открытым ключом используются два ключа - открытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается с помощью закрытого ключа, известного только получателю сообщения.( Ключ - информация, необходимая для беспрепятственного шифрования и дешифрования текстов.);Электронная подпись. Системой электронной подписи. называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.Управление ключами. Это процесс системы обработки информации, содержанием которых является составление и распределение ключей между пользователями.

Способы защиты от вирусов Для защиты от проникновения вирусов необходимо проводить мероприятия, исключающие заражение программ и данных компьютерной системы. Основными источниками проникновение вирусов являются коммуникационные сети и съемные носители информации. Для исключения проникновения вирусов через коммуникационную сеть необходимо осуществлять автоматический входной контроль всех данных, поступающих по сети, который выполняется сетевым экраном (брандмауэром), принимающим пакеты из сети только от надежных источников, рекомендуется проверять всю электронную почту на наличие вирусов, а почту, полученную от неизвестных источников, удалять не читая. Для исключения проникновения вирусов через съемные носители необходимо ограничить число пользователей, которые могут записывать на жесткий диск файлы и запускать программы со съемных носителей. Обычно это право дается только администратору системы. В обязательном порядке при подключении съемного носителя следует проверять его специальной антивирусной программой.

Классификация антивирусных средств Для обнаружения и удаления компьютерных вирусов разработано много различных программ, которые можно разделить на детекторы, ревизоры, фильтры, доктора и вакцины. Детекторы осуществляют поиск компьютерных вирусов в памяти и при обнаружении сообщают об этом пользователю. Ревизоры выполняют значительно более сложные действия для обнаружения вирусов. Они запоминают исходное состояние программ, каталогов, системных областей и периодически сравнивают их с текущими значениями. При изменении контролируемых параметров ревизоры сообщают об этом пользователю. Фильтры выполняют выявление подозрительных процедур, например, коррекция исполняемых программ, изменение загрузочных записей диска, изменение атрибутов или размеров файлов и др. При обнаружении подобных процедур фильтры запрашивают пользователя о правомерности их выполнения. Доктора являются самым распространенным типом антивирусных программ. Эти программы не только обнаруживают, но и удаляют вирусный код из файла "лечат" программы. Доктора способны обнаружить и удалить только известные им вирусы, поэтому их необходимо периодически, обычно раз в месяц, обновлять. Вакцины - это антивирусные программы, которые так модифицируют файл или диск, что он воспринимается программой-вирусом уже зараженным и поэтому вирус не внедряется. Современные антивирусные решения обладают всеми означенными механизмами и постоянно добавляют новые средства борьбы с вредоносными программами.

Популярные антивирусные средства Среди наиболее популярных у российских пользователей антивирусных пакетов назовем программы: Norton Antivirus, Антивирус Касперского и Dr.Web. По различным оценкам, в настоящее время продукты Лаборатории Касперского занимают большую часть российского рынка. Прочие производители, в первую очередь Symantec, "Диалог-Наука", Trend Micro и Panda, делят оставшуюся долю рынка. Рассмотрим коротко эти популярные программы. Symantec Norton AntiVirus - это одно из наиболее популярных в мире антивирусных решений, которое предохраняет компьютер от всех видов вредоносных программ, обеспечивает надежную безопасность и конфиденциальность работы пользователей. Программа автоматически удаляет вирусы различных классов, проверяет и обезвреживает входящие и исходящие сообщения электронной почты, выявляет и блокирует вирусы во вложениях службы передачи мгновенных сообщений. Приложение автоматически загружает обновлений системы антивирусной безопасности для защиты от новых угроз. Антивирус Касперского Personal - разработка "Лаборатории Касперского", воплощающая результаты многолетних исследований ведущих экспертов в области защиты от вредоносных программ. Продукт сочетает уникальную функциональность, удобный пользовательский интерфейс и высокий уровень защиты от вирусов. Программный комплекс позволяет организовать полномасштабную систему антивирусной защиты персонального компьютера. Он охватывает все возможные источники проникновения вирусной угрозы - съемные и постоянные файловые носители, электронную почту и Интернет. Использование "Антивируса Касперского" обеспечивает полное восстановление работоспособности системы при вирусной атаке. В то же время функция антивирусной проверки и лечения электронной почты позволяет очистить от вирусов входящую и исходящую корреспонденцию в режиме реального времени. В случае необходимости пользователю также доступны проверка и лечение почтовых баз различных почтовых систем. Doctor Web для Windows 95/XP представляет собой комбинацию антивирусного сканера Doctor Web и резидентного сторожа Spider Guard, интегрированного в ОС компьютера. Один из самых совершенных в мире эвристических анализаторов Doctor Web, в сочетании с ежедневно обновляющимися вирусными базами, является надежной защитой от вирусов всех классов. Резидентный сторож Spider осуществляет анализ всех опасных действий работающих программ и позволяет блокировать вирусную активность практически всех известных и еще неизвестных вирусов. Он позволяет не допустить заражения компьютера вирусом, даже если этот вирус не будет определен сканером Doctor Web с включенным эвристическим анализатором.

24.Введение в численные методы. Решение нелинейных уравнений.

Общие сведения о численном решении уравнений с одним неизвестным

Пусть задана непрерывная функция f(x). Требуется найти корни уравнения f(x) = 0 численными методами – это и является постановкой задачи. Численное решение уравнения распадается на несколько подзадач:

  • Анализ количества, характера и расположения корней (обычно путем построения графика функции или исходя из физического смысла исследуемой модели). Здесь возможны следующие варианты:

  • единственный корень;

  • бесконечное множество решений;

  • корней нет;

  • имеется несколько решений, как действительных, так и мнимых (например, для полинома степени n). Корни четной кратности выявить сложно.

  • Локализация корней (разбиение на интервалы) и выбор начального приближения к каждому корню. В простейшем случае можно протабулировать функцию с заданным шагом.

Если в двух соседних узлах функция будет иметь разные знаки, то между этими узлами лежит нечетное число корней уравнения (по меньшей мере один).

  • Вычисление каждого (или интересующего нас) корня уравнения с требуемой точностью. Уточнение происходит с помощью методов, изложенных ниже.

Метод дихотомии (бисекций)

Иначе называется методом половинного деления. Пусть задан начальный интервал [x0, x1], на котором f(x0)f(x1) ≤ 0 (т.е. внутри имеется не менее чем один корень). Найдем x2 = ½ (x0 + x1) и вычислим f(x2). Если f(x0)f(x2) ≤ 0, используем для дальнейшего деления отрезок [x0, x2], если > 0 – используем для дальнейшего деления отрезок [x1, x2], и продолжаем деление пополам.

Итерации продолжаются, пока длина отрезка не станет меньше 2ξ – заданной точности. Тогда середина последнего отрезка даст значение корня с требуемой точностью. В качестве иного критерия можно взять | f(x)| ≤ ξy.

Скорость сходимости метода невелика, однако он прост и надежен. Метод неприменим к корням четной кратности. Если на отрезке несколько корней, то заранее неизвестно, к какому из них сойдется процесс.

Если на заданном интервале предполагается несколько корней, то существует возможность последовательно исключать найденные корни из рассмотрения. Для этого воспользуемся вспомогательной функцией , где – только что найденный корень. Для функций f(x) и g(x) совпадают все корни, за исключением (в этой точке полюс функции g(x)). Для достижения требуемой точности рекомендуется грубо приблизиться к корню по функции g(x), а затем уточнить его, используя f(x).

Метод хорд

Идея метода проиллюстрирована рисунком. Задается интервал [ x0, x1], на котором f(x0)f(x1) ≤ 0, между точками x0 и x1 строится хорда, стягивающая f(x). Очередное приближение берется в точке x2, где хорда пересекает ось абсцисс. В качестве нового интервала для продолжения итерационного процесса выбирается тот, на концах которого функция имеет разные знаки. Условия выхода из итерационного цикла: или | f(x)| ≤ ξy.

Для вывода итерационной формулы процесса найдем точку пересечения хорды (описываемой уравнением прямой) с осью абсцисс: ax2 + b = 0, где ; b = f(x0) - ax0.

Отсюда легко выразить .

Метод хорд в большинстве случаев работает быстрее, чем метод дихотомии. Недостатки метода те же, что и в предыдущем случае.

Метод Ньютона (касательных).

Пусть x0 – начальное приближение к корню, а f(x) имеет непрерывную производную. Следующее приближение к корню найдем в точке x1, где касательная к функции f(x), проведенная из точки (x0, f0), пересекает ось абсцисс. Затем точно так же обрабатываем точку(x1, f1), организуя итерационный процесс. Выход из итерационного процесса по условию .

Уравнение касательной, проведенной из точки (x0, f0): y(x) = f /(x0)(x-x0) + f(x0) дает для y(x1) = 0 следующее выражение:

, (1)

которое и используется для организации итерационного процесса. Итерации сходятся, только если всюду выполняется условие ; в противном случае сходимость будет не при любом начальном приближении, а только в некоторой окрестности корня. Итерации будут сходиться к корню с той стороны, с которой .

Метод обладает самой высокой скоростью сходимости: погрешность очередного приближения примерно равна квадрату погрешности предыдущего приближения. Метод можно использовать для уточнения корней в области комплексных чисел, что необходимо при решении многих прикладных задач, например при численном моделировании электромагнитных колебательных и волновых процессов с учетом временной и пространственной диссипации энергии.

Недостатком метода можно указать необходимость знать явный вид первой и второй производных, так как их численный расчет приведет к уменьшению скорости сходимости метода. Иногда, ради упрощения расчетов, используют т.н. модифицированный метод Ньютона, в котором значениеf /(x) вычисляется только в точке x0, при этом число итераций увеличивается, но расчеты на каждой итерации упрощаются.

25. Введение в численные методы. Численное интегрирование.

Обзор методов интегрирования.

Методы вычисления однократных интегралов называются квадратурными (для кратных интегралов – кубатурными).

  • Методы Ньютона-Котеса. Здесь φ(x) – полином различных степеней. Сюда относятся метод прямоугольников, трапеций, Симпсона.

  • Методы статистических испытаний (методы Монте-Карло). Здесь узлы сетки для квадратурного или кубатурного интегрирования выбираются с помощью датчика случайных чисел, ответ носит вероятностный характер. В основном применяются для вычисления кратных интегралов.

  • Сплайновые методы. Здесь φ(x) – кусочный полином с условиями связи между отдельными полиномами посредством системы коэффициентов.

  • Методы наивысшей алгебраической точности. Обеспечивают оптимальную расстановку узлов сетки интегрирования и выбор весовых коэффициентов ρ(x) в задаче . Сюда относится метод Гаусса-Кристоффеля (вычисление несобственных интегралов) и метод Маркова.

Метод прямоугольников.

Различают метод левых, правых и средних прямоугольников. Суть метода ясна из рисунка. На каждом шаге интегрирования функция аппроксимируется полиномом нулевой степени – отрезком, параллельным оси абсцисс.

Выведем формулу метода прямоугольников из анализа разложения функции f(x) в ряд Тейлора вблизи некоторой точки x = xi.

Рассмотрим диапазон интегрирования от xi до xi+h, где h – шаг интегрирования.

Вычислим …=

= = . Получили формулу правых (или левых) прямоугольников и априорную оценку погрешности r на отдельном шаге интегрирования. Основной критерий, по которому судят о точности алгоритма – степень при величине шага в формуле априорной оценки погрешности.

В случае равного шага h на всем диапазоне интегрирования общая формула имеет вид

.

Здесь n – число разбиений интервала интегрирования, . Для справедливости существования этой оценки необходимо существование непрерывной f'(x).

Метод средних прямоугольников. Здесь на каждом интервале значение функции считается в точке , то есть . Разложение функции в ряд Тейлора показывает, что в случае средних прямоугольников точность метода существенно выше:

.

Метод трапеций.

Аппроксимация в этом методе осуществляется полиномом первой степени. Суть метода ясна из рисунка.

На единичном интервале

.

В случае равномерной сетки (h = const )

При этом , а . Погрешность метода трапеций в два раза выше, чем у метода средних прямоугольников! Однако на практике найти среднее значение на элементарном интервале можно только у функций, заданных аналитически (а не таблично), поэтому использовать метод средних прямоугольников удается далеко не всегда. В силу разных знаков погрешности в формулах трапеций и средних прямоугольников истинное значение интеграла обычно лежит между двумя этими оценками.

Особенности поведения погрешности. Казалось бы, зачем анализировать разные методы интегрирования, если мы можем достичь высокой точности, просто уменьшая величину шага интегрирования. Однако рассмотрим график поведения апостериорной погрешности R результатов численного

расчета в зависимост и от числа n разбиений интервала (то есть при шаг . На участке (1) погрешность уменьшается в связи с уменьшением шага h. Но на участке (2) начинает доминировать вычислительная погрешность, накапливающаяся в результате многочисленных арифметических действий. Таким образом, для каждого метода существует своя Rmin, которая зависит от многих факторов, но прежде всего от априорного значения погрешности метода R.

Метод Симпсона.

Подынтегральная функция f(x) заменяется интерполяционным полиномом второй степени P(x) – параболой, проходящей через три узла, например, как показано на рисунке ((1) – функция, (2) – полином).

Рассмотрим два шага интегрирования (h = const = xi+1 – xi), то есть три узла x0, x1, x2, через которые проведем параболу, воспользовавшись уравнением Ньютона:

.

Пусть z = x - x0, тогда

Теперь, воспользовавшись полученным соотношением, сосчитаем интеграл по данному интервалу:

.

В итоге

. Для равномерной сетки и четного числа шагов n формула Симпсона принимает вид:

Здесь , а в предположении непрерывности четвертой производной подынтегральной функции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]