Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KhIMIYa_otvety.doc
Скачиваний:
19
Добавлен:
28.08.2019
Размер:
349.7 Кб
Скачать

33.Растворы. Состав растворов. Химическая теория растворов д.И.Менделеева. Термодинамика процесса растворения.

См. вопрос 31-32.

Разрабатывая преимущественно химическую теорию растворов, Менделеев считал необходимым согласовывать ее с физической теорией, поскольку эти две точки зрения на природу растворов должны способствовать созданию общей теории растворов: "Образование растворов может рассматриваться с двух сторон: физической и химической, и в растворах виднее, чем где-либо, насколько эти стороны естествознания сближены между собою". «Гидратная» теория Менделеева, по существу явилась историческим предшественником теории электролитической диссоциации С.Аррениуса, а в дальнейшем – переросла в более общую теорию, в соответствии с которой первоначальная гидратация ионов является непременным условием диссоциации.

Растворение - это физико-химический процесс. При физическом явлении разрушается кристаллическая решетка и происходит диффузия молекул растворенного вещества. При химическом явлении в процессе растворения молекулы растворенного вещества реагируют с молекулами растворителя.

Процесс растворения сопровождается выделением или поглощением теплоты. Эту теплоту, отнесенную к одному молю вещества, называют тепловым эффектом растворения, Qp.

Общий тепловой эффект растворения зависит от тепловых эффектов:

а) разрушения кристаллической решетки (процесс всегда идет с затратой энергии — Q1);

б) диффузии растворенного вещества в растворителе (затрата энергии - Q2);

в) гидратации (выделение теплоты, +Q3, так как гидраты образуются за счет возникновения непрочной химической связи, что всегда сопровождается выделением энергии).

Общий тепловой эффект растворения Qp будет равен сумме названных тепловых эффектов.

34.Водные растворы электролитов. Понятие электролита. Электролитическая диссоциация. Сильные электролиты. Активность. Слабые электролиты. Степень диссоциации и константа диссо­циации. Закон разбавления.

ЭЛЕКТРОЛИТЫ, вещества, обладающие ионной проводимостью; их называют проводниками второго рода – прохождение тока через них сопровождается переносом вещества. К электролитам относятся расплавы солей, оксидов или гидроксидов, а также (что встречается значительно чаще) растворы солей, кислот или оснований в полярных растворителях, например в воде. Известны и твердые электролиты. Чтобы пропустить электрический ток через раствор электролита, в него опускают две металлические или угольные пластины – электроды – и соединяют их с полюсами источника постоянного тока. Положительный электрод называют анодом, отрицательный – катодом. Прохождение тока через электролит сопровождается химическими реакциями на электродах. Так, на катоде, погруженном в расплав соли или оксида либо в раствор соли, обычно осаждается металл, входящий в состав электролита.

Электролитическая диссоциация — распад вещества на ионы при растворении. Диссоциация на ионы происходит вследствие взаимодействия растворённого вещества с растворителем; по данным спектроскопических методов, это взаимодействие носит в значительной мере химический характер. Наряду с сольватирующей способностью молекул растворителя определённую роль в электролитической диссоциации играет также макроскопическое свойство растворителя — его диэлектрическая проницаемость.

Сильные электролиты - химические соединения, молекулы которых в разбавленных растворах практически полностью диссоциированы на ионы. Степень диссоциации таких электролитов близка к 1. К сильным электролитам относятся многие неорганические соли, некоторые неорганические кислоты и основания в водных растворах, а также в растворителях, обладающих высокой диссоциирующей способностью (спирты, амиды и др.).

Слабые электролиты - химические соединения, молекулы которых даже в сильно разбавленных растворах не полностью диссоциированы на ионы, находящиеся в динамическом равновесии с недиссоциированными молекулами. К слабым электролитам относится большинство органических кислот и многие органические основания в водных и неводных растворах.

Количественные расчеты характеристик растворов сильных электролитов осуществляют с помощью понятий активности электролита аэ и активностей катионов и анионов а+ и а- соответственно, которые равны произведению коэффициента активности на концентрацию.

Степень диссоциации — величина, характеризующая состояние равновесия реакции диссоциации в гомогенных (однородных) системах (газообразных, жидких). Степень электролитической диссоциации α равна отношению числа диссоциированных молекул n к сумме n+N, где N — число недиссоциированных молекул. Степень диссоциации зависит от концентрации раствора слабого электролита. При разбавлении водой степень диссоциации всегда увеличивается, т.к. увеличивается число молекул растворителя (H2O) на одну молекулу растворенного вещества. По принципу Ле Шателье равновесие электролитической диссоциации в этом случае должно сместиться в направлении образования продуктов, т.е. гидратированных ионов. Степень электролитической диссоциации зависит от температуры раствора. Обычно при увеличении температуры степень диссоциации растет, т.к. активируются связи в молекулах, они становятся более подвижными и легче ионизируются. Концентрацию ионов в растворе слабого электролита можно рассчитать, зная степень диссоциации a и исходную концентрацию вещества c в растворе.

Константа диссоциации (KD) - отношение произведения равновесных концентраций ионов в степени соответствующих стехиометрических коэффициентов к концентрации недиссоциированных молекул. Она является константой равновесия процесса электролитической диссоциации; характеризует способность вещества распадаться на ионы: чем выше KD, тем больше концентрация ионов в растворе. KD = ([H+][A-]) / [HA].

Закон разбавления Оствальда — соотношение, выражающее зависимость эквивалентной электропроводности разбавленного раствора бинарного слабого электролита от концентрации раствора:

K=cλ2/λ∞(λ∞-λ). Здесь К — константа диссоциации электролита, с — концентрация, λ и λ∞ — значения эквивалентной электропроводности соответственно при концентрации с и при бесконечном разбавлении.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]