Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
цитология. вопросы и ответы к экзамену..docx
Скачиваний:
31
Добавлен:
25.04.2019
Размер:
227.3 Кб
Скачать

Вопрос 11 Клеточная оболочка у растений и животных.

Наличие клеточной оболочки более чем все другие признаки отличает растения от животных. Например, простейшие жгутиковые, покрытые оболочкой, причисляют к примитивным растениям (Protophyta), а голые жгутиковые к примитивным животным (Protozoa). У низших растений голыми являются лишь репродуктивные клетки, а клетки, составляющие вегетативное тело, имеют клеточные стенки. У высших растений клеточной стенкой обладают даже гаметы: как яйцеклетка, так и пыльцевая трубка. Клеточная оболочка окружает собственно клетку со всех сторон и служит связующим звеном между ней и соседними клетками, обеспечивая, таким образом, единство и целостность всего растительного организма. В жестких оболочках растительных клеток образуются каналы, в которых располагаются тончайшие тяжи цитоплазмы – плазмодесмы. Благодаря этому, осуществляются межклеточные взаимодействия. Иными словами, у растений клеточные оболочки призваны обеспечивать те функции, которые у животных выполняют скелет, кожа и система кровообращения (т.е. опорную, защитную и транспортную.) Не удивительно поэтому, что в ходе эволюции у растений возникли весьма разнообразные по структуре и химическому составу типы клеточных стенок. Собственно говоря, растительные клетки во многом различают и классифицируют именно по форме и природе клеточных стенок. Оболочка, как правило, бесцветна и прозрачна. Она легко пропускает солнечный свет. Оболочки соседних клеток как бы сцементированы межклеточными веществами, образующими так называемую срединную пластинку. Вследствие этого соседние клетки оказываются отделёнными друг от друга стенкой, образованной двумя оболочками и срединной пластинкой. Это и даёт основание называть оболочку также клеточной стенкой. Клеточная стенка растительных клеток состоит, главным образом, из полисахаридов. Оболочку эмбриональных тканей и клеток, растущих растяжением, называют первичной. В этот период оболочка достаточно эластична. После прекращения роста клетки изнутри на первичную клеточную стенку начинают откладываться новые слои и образуется вторичная клеточная стенка, придающая клетке жёсткость и прочность. Химический состав Все компоненты, входящие в состав клеточной стенки, можно разделить на 4 группы: Структурные компоненты, представленные целлюлозой у большинства автотрофных растений, хитином (грибы), глюканом (дрожжи), манналом и ксиланом (водоросли).Компоненты матрикса, т.е. основного вещества, наполнителя оболочки – гемицеллюлозы, белки, липиды. Компоненты, инкрустирующие клеточную стенку, (т.е. откладывающиеся и выстилающие её изнутри) – лигнин и суберин.

Вопрос 12. Межклеточные и внутриклеточные контакты.

Строение межклеточных соединений В тех тканях, в которых клетки или их отростки плотно прилежат друг к другу (эпителий, мышечная ткань и пр.) между мембранами контактирующих клеток формируются связи – межклеточные контакты. Каждый тип межклеточных контактов формируется за счет специфических белков, подавляющее большинство которых — трансмембранные белки. Специальные адапторные белки могут соединять белки межклеточных контактов с цитоскелетом, а специальные "скелетные" белки - соединять отдельные молекулы этих белков в сложную надмолекулярную структуру. Во многих случаях межклеточные соединения разрушаются при удалении из среды ионов Ca2+. Функции межклеточных соединений Межклеточные соединения возникают в местах соприкосновения клеток в тканях и служат для межклеточного транспорта веществ и передачи сигналов (межклеточное взаимодействие), а также для механического скрепления клеток друг с другом. Через щелевые контакты могут передаваться электрические сигналы. Клетки органов и тканей вырабатывают ряд химических веществ, действующих на другие клетки (в том числе через межклеточные контакты) и вызывающих изменения в работе цитоскелета, в интенсивности обмена веществ и процессе синтеза клеткой белков. Типы межклеточных соединений Плазмодесмы Микроскопические цитоплазматические мостики, соединяющие соседние клетки растений. Простое межклеточное соединение При простом межклеточном соединении оболочки клеток сближены на расстояние 15 – 20 нм. Это соединение занимает наиболее обширные участки соприкасающихся клеток. Посредством простых соединений осуществляется слабая механическая связь, не препятствующая транспорту веществ в межклеточных пространствах. Разновидностью простого соединения является контакт типа «замок», когда билипидные мембраны соседних клеток вместе с участком цитоплазмы вдавливаются друг в друга, чем достигается большая поверхность соприкосновения и более прочная механическая связь.Плотное соединение (запирающая зона)В плотном соединении клеточные мембраны максимально сближены, здесь фактически происходит их слияние. Роль плотного соединения заключается в механическом сцеплении клеток и препятствии транспорту веществ по межклеточным пространствам. Эта область непроницаема для макромолекул и ионов, она ограждает межклеточные щели от внешней среды. Плотные соединения обычно образуются между эпителиальными клетками в тех органах (желудке, кишечнике и пр.), где эпителий ограничивает содержимое этих органов (желудочный сок, кишечный сок). В этих участках плотные контакты охватывают по периметру каждую клетку, межмембранные пространства отсутствуют, а соседние клеточные оболочки слиты в одну. Если же плотное сцепление происходит на ограниченном участке, то образуется пятно слипания (десмосома).Частными случаями плотного соединения являются зоны замыкания и слипания.Зона замыкания В зоне замыкания две соседние мембраны сливаются своими наружными слоями, эта зона непроницаема для макромолекул и ионов. Зона слипания (промежуточный контакт) В зоне слипания мембраны разделены щелью в 10-20 нм, заполненной плотным веществом (белковой природы). Десмосома (пятно сцепления, липкое соединение) Десмосома представляет собой небольшую площадку, иногда слоистого вида, диаметром до 0,5 мкм. Их функциональная роль заключается главным образом в механической связи между клетками. Существуют 3 типа десмосом – точечные, опоясывающие и полудесмосомы. Десмосомой называется образованное клетками соединение, прочно склеивающее клетки. Если они образуются между клетками и внеклеточным матриксом, то они называются полудесмосомами. Количество десмосом на одной клетке может достигать 2000. Такие контакты встречаются между клетками, которые могут подвергаться трению и другим механическим воздействиям (эпителиальные клетки, клетки сердечной мышцы). Со стороны цитоплазмы к десмосомам прикрепляются промежуточные филаменты, которые формируют остов цитоплазмы, обладающий большой прочностью на разрыв. Таким образом, через десмосомы промежуточные филаменты соседних клеток объединяются в непрерывную сеть по всей ткани. Тип промежуточных филаментов зависит от типа клеток: в большинстве эпителиальных клеток они кератиновые, а в клетках сердечной мышцы – десминовые. Нексус (щелевой контакт)Нексус представляет собой ограниченный участок контакта двух клеточных мембран диаметром 0,5 – 3 мкм с расстоянием между мембранами 2-3 нм. Обе эти мембраны пронизаны белковыми молекулами коннексонами, содержащими гидрофильные каналы. Через эти каналы осуществляется обмен ионами и микромолекулами соседних клеток. Поэтому нексусы называют также проводящими соединениями. Их функциональная роль заключается в переносе ионов и мелких молекул от клетки к клетке, минуя межклеточное пространство. Этот тип соединения встречается во всех группах тканей. Синапс (синаптическое соединение)Синапсы являются особыми формами межклеточных соединений. Они характерны для нервной ткани и встречаются между нейронами (межнейронные синапсы) или между нейроном и клеткой-мишенью (нервно-мышечные синапсы и пр.). Синапсы – участки контакта двух клеток, специализированных для односторонней передачи возбуждения или торможения от одной клетки к другой. Их функция – именно передача нервного импульса с нейрона на другую нервную клетку или клетку-мишень.