Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_v_gotovom_videYeMMM.docx
Скачиваний:
12
Добавлен:
22.04.2019
Размер:
1.06 Mб
Скачать

42. Алгоритм розв’язування задачі на безумовний екстремум. Визначення типу екстремуму. Навести відповідні формули.

У теорії дослідження функцій задача на відшукання екстремальних значень не містить ніяких додаткових умов щодо змінних і такі задачі належать до задач відшукання безумовного екстремуму функції. Локальний та глобальний екстремуми тоді визначаються з необхідних та достатніх умов існування екстремуму функції.

Нагадаємо, що необхідна умова існування локального екстремуму функції двох змінних формулюється так: для того, щоб точ­ка була точкою локального екстремуму, необхідно, щоб функція була неперервною і диференційовною в околі цієї точки і перші частинні похідні за змінними та у цій точ­ці дорівнювали нулю:

.

Точка називається критичною.

Достатня умова існування локального екстремуму функції двох змінних формулюється так: для того, щоб критична точка була точкою локального екстремуму, достатньо, щоб функ­ція була визначена в околі критичної точки та мала в цій точці неперервні частинні похідні другого порядку.

Тоді, якщо

,

то в точці функція має екстремум, причому, якщо

,

тоді – точка локального максимуму функції , а якщо

,

тоді – точка локального мінімуму функції .

У разі, якщо

,

то в точці функція екстремуму не має.

Якщо

,

то питання про існування екстремуму залишається відкритим.

43. Поняття про опуклі функції

Теорема Куна-Таккера дає змогу встановити типи задач, для яких на множині допустимих розв’язків існує лише один глобальний екстремум зумовленого типу. Вона тісно пов’язана з необхідними та достатніми умовами існування сідлової точки.

Розглянемо задачу нелінійного програмування, яку, не зменшуючи загальності, подамо у вигляді:

, (9.22)

, (9.23)

. (9.24)

(Очевидно, що знак нерівності можна змінити на протилежний множенням лівої і правої частин обмеження на (– 1)).

Теорема 9.1. (Теорема Куна-Таккера). Вектор Х* є оптимальним розв’язком задачі (9.22)-(9.24) тоді і тільки тоді, коли існує такий вектор , що при для всіх точка є сідловою точкою функції Лагранжа ,

і функція мети для всіх угнута, а функції – опуклі.

Умови теореми Куна — Таккера виконуються лише для задач, що містять опуклі функції.

Опуклі й угнуті функції

Наведемо основні означення та теореми. Нехай задано n-вимірний лінійний простір Rn. Функція , що задана на опуклій множині , називається опуклою, якщо для будь-яких двох точок та з множини X і будь-яких значень виконується співвідношення:

. (9.25)

Якщо нерівність строга і виконується для , то функція називається строго опуклою.

Функція , яка задана на опуклій множині , називається угнутою, якщо для будь-яких двох точок та з множини X і будь-якого справджується співвідношення:

. (9.26)

Якщо нерівність строга і виконується для , то функція називається строго угнутою.

Слід зазначити, що опуклість та угнутість функції визначаються лише відносно опуклих множин у , оскільки за наведеними означеннями разом з двома будь-якими точками та множині X належать також точки їх лінійної комбінації: для всіх значень , що можливо лише у разі, коли множина X є опуклою.

Теорема 9.2. Нехай – опукла функція, що задана на замкненій опуклій множині X, тоді будь-який локальний мінімум на цій множині є і глобальним.

Теорема 9.3. Нехай – опукла функція, що визначена на опуклій множині Х, і крім того, вона неперервна разом з частинними похідними першого порядку в усіх внутрішніх точках Х. Нехай – точка, в якій . Тоді в точці досягається локальний мінімум, що збігається з глобальним.

Як наслідок теореми можна показати, що коли Х замкнена, обмежена знизу, опукла множина, то глобального максимуму опукла функція f(X) досягає на ній у одній чи кількох точках (при цьому допускається, що в точці Х значення функції скінченне). Застосовуючи за розв’язування таких задач процедуру перебору крайніх точок, можна отримати точку локального максимуму, однак не можна встановити, чи є вона точкою глобального максимуму.

Для угнутих функцій отримані результати формулюють так. Нехай f(X) – угнута функція, що задана на замкненій опуклій множині . Тоді будь-який локальний максимум f(X) на множині Х є глобальним. Якщо глобальний максимум досягається в двох різних точках множини, то він досягається і на нескінченній множині точок, що лежать на відрізку, який сполучає ці точки. Для строго угнутої функції існує єдина точка, в якій вона досягає глобального максимуму.

Градієнт угнутої функції f(X) у точках максимуму дорівнює нулю, якщо f(X) – диференційовна функція. Глобальний мінімум угнутої функції, якщо він скінченний на замкненій обмеженій зверху множині, має досягатися в одній чи кількох її крайніх точках за умови скінченності функції f(X) у кожній точці цієї множини.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]