Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен линейка.docx
Скачиваний:
10
Добавлен:
15.04.2019
Размер:
690.31 Кб
Скачать

12.2 Вычитание комплексных чисел

Вычитание определяется как действие, обратное сложению. Разностью двух комплексных чисел z1 и z2 называется такое комплексное число z, которое, будучи сложенным с z2, дает число zl т. е. z=z1-z2, если z+z2=z1.

Если z1=x1+iy1, z2=x2+iy2, то из этого определения легко получить z:

z=z1-z2=(x1-x2)+i(y1-y2).                          (28.2)

Из равенства (28.2) следует, что геометрически комплексные числа вычитаются как векторы (см. рис. 165).

Непосредственно из рисунка видно, что |z1-z2|≥|z1|-|z2|. Отметим, что

т. е. модуль разности двух комплексных чисел равен расстоянию d между точками, изображающими эти числа на плоскости.

Поэтому, например, равенство |z-2i|=1 определяет на комплексной плоскости множество точек z, находящихся на расстоянии 1 от точки z0=2i, т. е. окружность с центром в z0=2i и радиусом 1.

12.3 Умножение комплексных чисел

Произведением комплексных чисел z11 +iy1 и z22+iy2 называется комплексное число, определяемое равенством

z=z1 z2 =(x1 x2- у1 у2)+i(x1 y2+y1x 2 ).                    (28.3)

Отсюда, в частности, следует важнейшее соотношение

i 2 =- 1.                                                 (28.4)

Действительно, i2=ii=(0+1 i )(0+1i )=(0-1)+i(0+0)=-1. Благодаря соотношению (28.4) формула (28.3) получается формально путем перемножения двучленов x1+ iy1 и х2+iy2:

1 +iy1 )(x2+iy2) =x1x 2 +x1 iy2+i у1 х2+iy1iy 2 =x1 x2 +i2y1 y2+i (x1 y2+y1 x2)=x1 x2-y1 y2+i(x1 y2+y1x 2 ).

Например,

(2-3i)(- 5+4i)=-10+8i+15i-12i2=-10+23i+12=2+23i.

Заметим, что z*z=(х+iy)(x-iy)=х22 — действительное число.

Умножение комплексных чисел обладает переместительным, сочетательным и распределительным (дистрибутивным) свойствами:

z1z2=z2z1

(z1z2)z3=z1(z2z3).

z1(z2+z3)=z1z2+z1z3.

В этом легко убедиться, используя определение (28.3).

Найдем произведение комплексных чисел z1=r1(cosφ1+isinφ1) и z2=r2(cosφ2+isinφ2), заданных в тригонометрической форме:

z1z2=r1(cosφ1+isinφ1)r2(cosφ2+isinφ2)=

r1r2(cosφ1cosφ2+isinφ1cosφ2+rcosφ1siπφ2-sinφ1sinφφ2)=

=r1r2((cosφ1cosφ2-siπφ1sinφ2)+i(sinφ1cosφ2+cosφ1 sinφ2))=

=r1r2(cos(φ12)+i sin(φ12)),

т. е.

z1z2=r1r2(cos(φ12)+isin(φ12)).

Мы показали, что при умножении комплексных чисел их модули перемножаются, а аргументы складываются.

Это правило распространяется на любое конечное число множителей. В частности, если есть n множителей и все они одинаковые, то

zn=(r(cosφ+isinφ))n=rn(cosnφ+isinnφ).              (28.5)

Формула (28.5) называется формулой Муавра.

Пример 12.1

Найти  

Решение: Запишем сначала число   в тригонометрической форме:

По формуле Муавра имеем

12.4. Деление комплексных чисел

Деление определяется как действие, обратное умножению. Частным двух комплексных чисел z1 и z2≠0 называется комплексное число z, которое, будучи умноженным на z2, дает число z1, т. е. z1/z2=z, если z2z=z1.

Если положить z1=x1+iy1; z22+iy2≠0, z=х+iy, то из равенства (х2+iy2)(x+iy)=x1+iy1 следует

Решая систему, найдем значения х и у:

Таким образом,

На практике частное двух комплексных чисел находят путем умножения числителя и знаменателя на число, сопряженное знаменателю («избавляются от мнимости в знаменателе»).

Пример 12.2 

Выполнить деление   

Решение:

Для тригонометрической формы комплексного числа формула деления имеет вид

При делении комплексных чисел их модули, соответственно, делятся, а аргументы, соответственно, вычитаются.

15.Скаля́рное произведе́ние — операция над двумя векторами, результатом которой является скаляр (число), не зависящее от системы координат и характеризующее длины векторов-сомножителей и угол между ними. Данной операции соответствует умножение длины данного вектора x на проекцию другого вектора y на данный вектор x. Эта операция обычно рассматривается как коммутативная и линейная по каждому сомножителю.Обычно используется одно из следующих обозначений: . .

Определение.Скалярным произведением в векторном пространстве над полем называется функция для элементов , принимающая значения в , определенная для каждой пары элементов и удовлетворяющая следующим условиям:

для любых трех элементов и пространства и любых чисел справедливо равенство (линейность скалярного произведения по первому аргументу);

для любых и справедливо равенство , где черта означает комплексное сопряжение (эрмитова симметричность);

для любого имеем , причем только при (положительная определенность скалярного произведения).Действительное линейное пространство со скалярным произведением называется евклидовым, комплексное — унитарным.Заметим, что из п.2 определения следует, что действительное. Поэтому п.3 имеет смысл несмотря на комплексные (в общем случае) значения скалярного произведения.

Из определения скалярного произведения следует, что где, например, есть величина проекции вектора на направление вектора .Скалярный квадрат вектора:

Свойства скалярного произведения:

16. Любая прямая на плоскости может быть задана уравнением первого порядкаАх + Ву + С = 0,причем постоянные А, В не равны нулю одновременно, т.е. А2 + В2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой. В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

- C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

- А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

- В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

- В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

- А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий

. 1. Общее уравнение прямой: Ax + By + C = 0. (2,1)

2. Уравнение прямой с угловым коэффициентом: y - y0 = k (x - x0), (2.2)

где k - угловой коэффициент прямой, то есть k = tgα , где α - величина угла, образованного прямой с осью Оx, M (x0, y0 ) - некоторая точка, принадлежащая прямой.

Уравнение (2.2) принимает вид y = kx + b, если M (0, b) есть точка пересечения прямой с осью Оy.

3. Уравнение прямой в отрезках: x/a + y/b = 1 (2.3)

где a и b - величины отрезков, отсекаемых прямой на осях координат.

4. Уравнение прямой, проходящей через две данные точки - A(x1, y1) и B(x2, y2 ): (2.4)

5. Уравнение прямой, проходящей через данную точку A(x1, y1) параллельно данному вектору a(m, n):

(2.5) Нормальное уравнение прямой: rn0 - р = 0, (2.6) где r - радиус-вектор произвольной точки M(x, y) этой прямой, n0 - единичный вектор, ортогональный этой прямой и направленный от начала координат к прямой; р - расстояние от начала координат до прямой. Нормальное уравнение прямой в координатной форме имеет вид: x cosα + y sinα - р = 0, где α - величина угла, образованного прямой с осью Оx. Уравнение пучка прямых с центром в точке А(x1, y1) имеет вид: y-y1 = λ(x-x1), где λ - параметр пучка.

Взаимное расположение двух прямых на плоскости. Этот вопрос уже обсуждался в предыдущей лекции, когда оба уравнения данных прямых записывались в каноническом или параметрическом виде. Пусть сейчас оба уравнения прямых записаны в общем виде.

Теорема. Пусть и – общие уравнения двух прямых на координатной плоскости Оху. Тогда

1) если , то прямые и совпадают;

2) если , то прямые и параллельные;

3) если , то прямые и пересекаются.

Вектор n(А,В) ортогонален прямой, числа A и B одновременно не равны нулю.

Основные задачи на прямую в пространстве

Прямая линия в пространстве. Основные формулы:

1. Канонические уравнения прямой линии в пространстве, или уравнения прямой с направляющими коэффициентами, имеют вид (1)

где x0, y0, z0 - координаты точки, через которую проходит прямая, а m, n и p - направляющие коэффициенты прямой, которые являются проекциями на координатные оси Ox, Oy, Oz направляющего вектора прямой.

Если , и - углы между прямой и координатными осями Ox, Oy и Oz, то

(2)

, и называются направляющими косинусами прямой. Направляющие коэффициенты m, n и p можно рассматривать как проекции на координатные оси вектора, параллельного прямой, причем m, n и p не могут быть одновременно равны нулю. Уравнения (1) могут быть записаны также в виде (3)

2. В параметрическом виде уравнения прямой линии в пространстве записываются так: x = x0 + mt; y = y0 + nt; z = z0 + pt, (4) где t - параметр.

3. Общие уравнения прямой:

(5)

Каждое из уравнений (5) - уравнение плоскости, и таким образом прямая в пространстве может рассматриваться как пересечение двух плоскостей, причем плоскости эти предполагаются непараллельными, т. е. соотношение не имеет места.

4. Условие параллельности двух прямых в пространстве:

(6)

имеет вид (7)

5. Условие перпендикулярности двух прямых (6) имеет вид mm1 + nn1 + pp1 = 0. (8)

6. Угол между двумя прямыми (6) определяется по формуле

(9)

7. Уравнение прямой, проходящей через две данные точки A(x1, y1, z1) и B(x2, y2, z2), запишутся в виде

(10)

17. Кривая второго порядка — геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

в котором по крайней мере один из коэффициентов отличен от нуля.

Окружность — геометрическое место точек плоскости, равноудалённых от заданной точки, называемой центром, на заданное ненулевое расстояние, называемое её радиусом. Общее уравнение окружности записывается как: или

где

Точка — центр окружности, R — её радиус.

Уравнение окружности, проходящей через три точки (с помощью определителя) и

Э́ллипс (др.-греч. ἔλλειψις — опущение, недостаток, в смысле недостатка эксцентриситета до 1) — геометрическое место точек M Евклидовой плоскости, для которых сумма расстояний до двух данных точек F1 и F2 (называемых фокусами) постоянна и больше расстояния между фокусами, то есть

| F1M | + | F2M | = 2a, причем | F1F2 | < 2a.

Каноническое уравнение

Для любого эллипса можно найти декартову систему координат такую, что эллипс будет описываться уравнением (каноническое уравнение эллипса):

Оно описывает эллипс с центром в начале координат, оси которого совпадают с осями координат.

Гипе́рбола (др.-греч. ὑπερβολή, от др.-греч. βαλειν — «бросать», ὑπερ — «сверх») — геометрическое место точек M Евклидовой плоскости, для которых абсолютное значение разности расстояний от M до двух выделенных точек F1 и F2 (называемых фокусами) постоянно. Точнее,

причем | F1F2 | > 2a > 0.

Наряду с эллипсом и параболой, гипербола является коническим сечением и квадрикой. Гипербола может быть определена как коническое сечение с эксцентриситетом, большим единицы.

Канонический вид

Перемещением центра гиперболы в начало координат и вращением её относительно центра уравнение гиперболы можно привести к каноническому виду

,где большая a и малая b полуоси.

Пара́бола (греч. παραβολή — приложение) — геометрическое место точек, равноудалённых от данной прямой (называемой директрисой параболы) и данной точки (называемой фокусом параболы).Наряду с эллипсом и гиперболой, парабола является коническим сечением. Она может быть определена как коническое сечение с единичным эксцентриситетом

Каноническое уравнение параболы в прямоугольной системе координат:

(или , если поменять местами оси).

Приведение уравнения линии второго порядка к каноническому виду

Пусть в прямоугольной системе координат алгебраическая линия второго порядка задана уравнением (3.34):

Чтобы привести уравнение к каноническому виду, нужно выполнить следующие действия.

1. Если в уравнении имеется член с произведением неизвестных , то делаем поворот системы координат:

на угол , удовлетворяющий равенству . При этом получим "почти" приведенное уравнение линии второго порядка: Если , переходим к пункту 2, поворот системы координат делать не нужно, так как исходное уравнение имеет "почти" приведенный вид. 2. Выполняем параллельный перенос системы координат:а) если в уравнении нет линейных членов, то переходим к пункту 3;б) если в уравнении имеется линейный член с какой-либо неизвестной и квадратичный член с этой же неизвестной, то, дополняя эти члены до полного квадрата, делаем замену, чтобы в уравнении не стало линейного члена с этой неизвестной. Например, если в уравнении и ,то выполняем преобразования: а затем замену неизвестных , после которой в уравнении не будет линейного члена с неизвестной ; в) если в уравнении имеется только один линейный член с какой-либо неизвестной, а квадрат этой неизвестной отсутствует, то при помощи замены этой переменной надо сделать равным нулю свободный член уравнения. Например, если уравнение имеет вид то, выполняя замену неизвестных , получаем уравнение без свободного члена: енное в результате упрощений (пункт 2) уравнение имеет "почти" канонический вид. Для окончательного упрощения "почти" канонического уравнения при необходимости применяются следующие преобразования:

а) переименование координатных осей: ;

б) изменение направления координатной оси, например оси абсцисс: ;

в) умножение обеих частей уравнения на отличный от нуля множитель;

г) перенос членов из одной части уравнения в другую. В результате этих преобразований уравнение приводится к каноническому виду. Замену неизвестных, приводящую уравнение поверхности к каноническому виду, определяем как композицию всех замен, применяемых в ходе решения.

18. Всякая плоскость в пространстве определяется линейным уравнением

и обратно, всякое линейное уравнение (3) определяет плоскость в пространстве. Неполные уравнения плоскости:

А) - уравнение плоскости, проходящей через начало координат;

Б) - уравнение плоскости, параллельной оси ;

В) - уравнение плоскости, параллельной оси ;

Г) - уравнение плоскости, параллельной оси ;

Д) - уравнение плоскости, параллельной координатной плоскости ;

Е) - уравнение плоскости, параллельной координатной плоскости ;

Ж) - уравнение плоскости, параллельной координатной плоскости .

Опр. Две плоскости в пространстве называются параллельными, если они не пересекаются, в противном случаи они пересекаются.

Теорема1: Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Доказательство: Пусть и - данные плоскости, а1 и а2 - прямые в плоскости , пересекающиеся в точке А, в1 и в2 - соответственно параллельные им прямые в плоскости . Допустим, что плоскости и не параллельны, т.е. пересекаются по некоторой прямой с. По теореме прямые а1 и а2, как параллельные прямым в1и в2, параллельны плоскости , и поэтому они не пересекают лежащую в этой плоскости прямую с. Таким образом, в плоскости через точку А проходят две прямые (а1 и а2) , параллельные прямой с. Но это невозможно по аксиоме параллельных. Мы пришли к противоречию ЧТД.

Перпендикулярные плоскости: Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым.

Теорема2: Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Доказательство:Пусть - плоскость, в -перпендикулярная ей прямая, - плоскость, проходящая через прямую в, с - прямая, по которой пересекаются плоскости и . Докажем, что плоскости и перпендикулярны. Проведем в плоскости через точку пересечения прямой в с плоскостью прямую а,перпендикулярную прямой с. Проведем через прямые а и в плоскость . Она перпендикулярна прямой с, т.к. прямая с перпендикулярна прямым а и в. Т. к. прямые а и в перпендикулярны, то плоскости и перпендикулярны. ч.т.д.

19. Прямая в пространстве может быть задана как линия пересечения двух плоскостей. Так как точка прямой прнадлежит каждой из плоскостей, то ее координаты обязаны удовлетворять уравнениям обеих плоскостей, то есть удовлетворять системе из двух уравнений.

Итак, если уравнения двух непараллельных плоскостей и , то прямая, являющаяся их линией пересечения, задается системой уравнений

(11.11)И наоборот, точки, удовлетворяющие такой системе уравнений, образуют прямую, являющуюся линией пересечения плоскостей, чьи уравнения образуют эту систему. Уравнения (11.11) называют общими уравнениями прямой в пространстве. Замечание 11.2 Любые попытки с помощью преобразований уравнений системы (11.11) получить одно (линейное) уравнение, задающее прямую, обречены на неудачу. Одно уравнение -- это уравнение плоскости. Общие уравнения прямой "неудобны" для получения информации о положении прямой. Например, чтобы найти координаты какой-нибудь точки на прямой, нужно провести довольно сложные вычисления. А именно, задать произвольно какую-нибудь координату, подставить ее в систему (11.11) и из получившейся системы двух уравнений с двумя неизвестными найти две остальные координаты. Причем может оказаться, что полученная система не имеет решений. Тогда нужно произвольно задать другую координату и из системы найти две оставшиеся координаты.

Уравнения прямой в пространстве

Векторное параметрическое уравнение прямой в пространстве:

где — радиус-вектор некоторой фиксированной точки M0, лежащей на прямой, — ненулевой вектор, коллинеарный этой прямой, — радиус-вектор произвольной точки прямой.

Параметрическое уравнение прямой в пространстве:

где — координаты некоторой фиксированной точки M0, лежащей на прямой; — координаты вектора, коллинеарного этой прямой.

Каноническое уравнение прямой в пространстве:

где — координаты некоторой фиксированной точки M0, лежащей на прямой; — координаты вектора, коллинеарного этой прямой.

Общее векторное уравнение прямой в пространстве:

Поскольку прямая является пересечением двух различных непараллельных плоскостей, заданных соответственно общими уравнениями:

и

то уравнение прямой можно задать системой этих уравнений:

Взаимное расположение нескольких прямых на плоскости

Две прямые, заданные уравнениями

или

пересекаются в точке

Угол γ12 между пересекающимися прямыми определяется формулой

При этом под γ12 понимается угол, на который надо повернуть первую прямую (заданную параметрами A1, B1, C1, k1 и b1) вокруг точки пересечения против часовой стрелки до первого совмещения со второй прямой.

Эти прямые параллельны, если A1B2 − A2B1 = 0 или k1 = k2, и перпендикулярны, если A1A2 + B1B2 = 0 или .

Любую прямую, параллельную A1x + B1y + C1 = 0, можно выразить уравнением A1x + B1y + C = 0. При этом расстояние между ними будет равно

Если знак перед радикалом противоположен C1, то δ будет положительным, когда вторая прямая и начало координат лежат по разные стороны от первой прямой.

Для того, чтобы три прямые

пересекались в одной точке или были параллельны друг другу, необходимо и достаточно, чтобы выполнялось условие

Если и , то прямые и перпендикулярны.

20. Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.

Пусть в пространстве заданы две прямые:

Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами и . Так как , то по формуле для косинуса угла между векторами получим Условия параллельности и перпендикулярности двух прямых равносильны условиям параллельности и перпендикулярности их направляющих векторов S1 и :

Две прямые параллельны тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, т.е. l1 параллельна l2 тогда и только тогда, когда s1 параллелен .

Две прямые перпендикулярны тогда и только тогда, когда сумма произведений соответствующих коэффициентов равна нулю: .

Углом между прямой и плоскостью будем называть угол, образованный прямой и её проекцией наплоскость. Пусть прямаяи плоскость заданы уравнениями

Рассмотрим векторы и . Если угол между ними острый, то он будет , где φ – угол между прямой и плоскостью. Тогда .

Если угол между векторами и тупой, то он равен . Следовательно . Поэтому в любом случае . Вспомнив формулу вычисления косинуса угла между векторами, получим .

Условие перпендикулярности прямой и плоскости. Прямая и плоскость перпендикулярны тогда и только тогда, когда направляющий вектор прямой и нормальный вектор плоскости коллинеарны, т.е . .

Условие параллельности прямой и плоскости. Прямая и плоскость параллельны тогда и только тогда, когда векторы и перпендикулярны.

21. Линейное, или векторное пространство над полем P — это непустое множество L, на котором введены операции

1.сложения, то есть каждой паре элементов множества ставится в соответствие элемент того же множества, обозначаемый

2.умножения на скаляр (то есть элемент поля P), то есть любому элементу и любому элементу ставится в соответствие единственный элемент из , обозначаемый .

При этом на операции накладываются следующие условия:

1. ., для любых (коммутативность сложения);

2. , для любых (ассоциативность сложения);

3.существует такой элемент , что д для любого (существование нейтрального элемента относительно сложения), в частности L не пусто;

4.для любого существует такой элемент , что (существование противоположного элемента относительно сложения).

5. (ассоциативность умножения на скаляр);

6. (унитарность: умножение на нейтральный (по умножению) элемент поля P сохраняет вектор).

7. (дистрибутивность умножения на вектор относительно сложения скаляров);

8. (дистрибутивность умножения на скаляр относительно сложения векторов).

Элементы множества L называют векторами, а элементы поля P — скалярами. Свойства 1-4 совпадают с аксиомами абелевой группы.

Простейшие свойства

1.Векторное пространство является абелевой группой по сложению.

2.Нейтральный элемент является единственным, что вытекает из групповых свойств.

3. для любого .

4.Для любого противоположный элемент является единственным, что вытекает из групповых свойств.

5. для любого .

6. для любых и .

7. для любого .

22. Следующие теоремы дают несколько критериев линейной зависимости и соответственно линейной независимости систем векторов.

Теорема. (Необходимое и достаточное условие линейной зависимости системы векторов.)

Система векторов векторного пространства является линейно зависимой тогда и только тогда, когда один из векторов системы линейно выражается через другие вектора этой системы.

Доказательство. Необходимость. Пусть система линейно зависимая. Тогда, по определению, она представляет нулевой вектор нетривиально, т.е. существует нетривиальная линейная комбинация данной системы векторов равная нулевому вектору: , где хотя бы один из коэффициентов этой линейной комбинации не равен нулю. Пусть

Разделим обе части предыдущего равенства на этот ненулевой коэффициент (т.е. умножим на : Обозначим: , где .

Тогда или ,т.е. один из векторов системы линейно выражается через другие векторы этой системы, ч.т.д.

Достаточность. Пусть один из векторов системы линейно выражается через другие вектора этой системы:

.Перенесем вектор в правую часть этого равенства:

Так как коэффициент при векторе равен , то мы имеем нетривиальное представление нуля системой векторов , что означает, что эта система векторов является линейно зависимой, ч.т.д.Теорема доказана.

Следствие.

1. Система векторов векторного пространства является линейно независимой тогда и только тогда, когда ни один из векторов системы линейно не выражается через другие вектора этой системы.

2. Система векторов, содержащая нулевой вектор или два равных вектора, является линейно зависимой.

Базис и ранг системы векторов.

Пусть задана система векторов a1, a2, ..., am (1)

Выделим из этой системы подсистему ai1, ai2, ..., air (2), где числа i1, i2, ir - какие-то из чисел от (1; m). Подсистема (2) является максимальной линейно независимой подсистемой или базисом системы (1), если векторы системы (2) линейно независимы, а любой вектор системы (1) является их линейной комбинацией.

Пример: e1и e2 являются базисом всех двухмерных векторов (e1 по оси 0x, а e2 по оси 0y).

A= c1e1+ c2e2.

В одной и той же системе векторов может быть несколько базисов, но число векторов в каждом базисе одно и то же.

Два различных базиса одной и той же системы векторов содержит одинаковое количество векторов.

Рангом системы векторов называется число векторов в любом базисе системы, т.е. рангом системы векторов является максимальное число линейно независимых векторов системы.

Ранг «r» R2= 2. Система, состоящая более чем из n n-мерных векторов линейно зависима. Отсюда следует, что базис любой системы векторов состоит из конечного числа векторов и оно не превосходит n.Rn будет иметь максимальное число линейно независимых векторов n (размерность - n). Любой базис n-мерного векторного пространства содержит n векторов

23.

Базис. Размерность

Конечная сумма вида

называется линейной комбинацией элементов с коэффициентами .

Линейная комбинация называется нетривиальной, если хотя бы один из её коэффициентов отличен от нуля.

Элементы называются линейно зависимыми, если существует их нетривиальная линейная комбинация, равная нулевому элементу θ. В противном случае эти элементы называются линейно независимыми.

Бесконечное подмножество векторов из L называется линейно зависимым, если линейно зависимо его некоторое конечное подмножество, и линейно независимым, если любое его конечное подмножество линейно независимо.

Число элементов (мощность) максимального линейно независимого подмножества пространства не зависит от выбора этого подмножества и называется рангом, или размерностью, пространства, а само это подмножество — базисом (базисом Га́меля или линейным базисом). Элементы базиса также называют базисными векторами. Свойства базиса:

Любые n линейно независимых элементов n-мерного пространства образуют базис этого пространства.

Любой вектор можно представить (единственным образом) в виде конечной линейной комбинации базисных элементов:

Определение. Число векторов в базисе векторного пространства называется его размерностью.

Обозначение: – размерность векторного пространства V.

Таким образом, в соответствие с этим и предыдущими определениями, имеем:

1) – векторное пространство векторов прямой L.

– базис , , , , – разложение вектора по базису , – координата вектора относительно базиса .

2) – векторное пространство векторов плоскости Р.

  • – базис , , , – разложение вектора по базису , – координаты вектора относительно базиса .

3) – векторное пространство векторов в пространстве точек S.

– базис , , – разложение вектора по базису , – координаты вектора относительно базиса .

Замечание. Если , то и можно выбрать базис пространства так, что – базис и – базис . Тогда , и , .

Таким образом, любой вектор прямой L, плоскости Р и пространства S можно разложить по базису :

.Обозначение. В силу теоремы о равенстве векторов, мы можем отождествить любой вектор с упорядоченной тройкой действительных чисел и писать:

. Это возможно лишь том случае, когда базис фиксирован и нет опасности спутаться.

Определение. Запись вектора в виде упорядоченной тройки действительных чисел называют координатной формой записи вектора: .

Определение. Пусть V и W – произвольные векторные пространства над полем К. Гомоморфизм называют изоморфизмом векторного пространства в векторное пространство , если отображение f является биекцией (т.е. взаимно однозначным соответствием).Определение. Если существует изоморфизм , то векторное пространство Vназывают изоморфным векторному пространствуW .Обозначение: .

24. Непустое множество является подпространством пространства V тогда и только тогда, когда W замкнуто относительно сложения векторов и умножения их на скаляры. Иными словами, выполняются следующие два условия:

1.

2.

Пусть UиW — подпространства векторного пространства V над полемF .

Предложение 1. Пересечение подпространствU и W является векторным пространством.

Замечание 1. Объединение пространств Uи W не обязано быть векторным пространством.

Определение 1. Суммой1) подпространств W иU называется наименьшее подпространство в V, содержащее UиW , то есть

. Вообще говоря, можно определить сумму любого конечного числа подпространств:

Определение 1'. Сумма подпространств вV — это наименьшее подпространство, содержащее все , то есть

. Предложение 2. Пусть U иW — подпространства конечномерного векторного пространства V. Тогда

Прямой суммой векторных пространств U иW называется декартово произведение с операциями сложения векторов и умножения их на скаляр, определенными следующей формулой:

.

25. Линейной оболочкой заданной конечной совокупности элементов векторного пространства n над полем К называется множество всех линейных комбинаций этих элементов с коэффициентами из поля К. При этом сама совокупность называется порождающей системой данной линейной оболочки, а сама линейная оболочка обозначается символом

. Линейные оболочки обладают следующими свойствами:

1. Линейная оболочка элементов векторного пространства Rn является подпространством М векторного пространства Rn.Данный результат следует из определения линейной оболочки: сумма двух векторов из линейной оболочки будет принадлежать линейной оболочки (одна из линейных комбинаций), произведение вектора из линейной оболочки также будет принадлежать линейной оболочки.

2. Линейная оболочка может совпадать со всем пространством Rn (если образующая система является базисом в пространстве Rn )

3. Линейная оболочка является наименьшим подпространством, содержащим элементы . Все остальные подпространства могут только содержать вектора порождающей системы или их возможные комбинации.

4. Если какой-нибудь элемент из порождающей системы элементов есть линейная комбинация остальных элементов этой системы, то его можно удалить из порождающей системы, не изменив при этом линейной оболочки.

5. Если координатная матрица системы образующих имеет ранг р, где , то любая линейно независимая система , является базисом линейной оболочки , а сама линейная оболочка будет подпространством размерности р,.