Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции на кач ан.docx
Скачиваний:
64
Добавлен:
16.12.2018
Размер:
259.58 Кб
Скачать

Выбор массы навески в гравиметрии

      Как известно, точность анализа зависит как от массы навески, так и от массы гравиметрической формы, получаемой из нее. Если навеска будет взята с большой точностью, а полученная из нее гравиметрическая форма будет малой величиной, измеренной с большой по­грешностью, то весь анализ будет выполнен с ошибкой, допущенной при взвешивании гравиметрической формы. Поэтому должна быть взята такая навеска, чтобы при ее взвешивании и при взвешивании полученной из нее гравиметрической формы ошибка не превышала ± 0,2 %. Для этого необходи­мо определить минимальную массу, которую еще можно взвесить с точнос­тью ± 0,2 % на аналитических весах с абсолютной ошибкой взвешивания ± 0,0001 г, а минимальная ошибка, учитывая возможный разброс (±), в этом случае будет равной 2 ∙ (±0,000 1) = ±0,0002 г.

100 г    -     ± 0,2 г

        х       -   ± 0,0002 г

х = 0,1 г 

      Следовательно, такой минимальной массой m­min является 0,1 г. При вели­чине, меньшей чем 0,1 г, ошибка превысит  0,2 %. При расчете массы навески в гравиметрическом анализе масса грави­метрической формы компонента приравнивается к минимальной массе вещества:

mгр.ф  = mmin ,           mн = mminF ∙ 100 / w, %.

      Если величина массы навески, рассчитанная по указанной формуле, окажется менее 0,1 г, то навеску следует увеличить до 0,1 г. Чаще всего массу исходной навески указывают в методике анализа или же для объемных аморфных осадков массу навески берут около 0,1,   а для кристаллических ­от 0,1 до 0,5 г.

      Расчет количества осадителя проводят с учетом возможного содержания определяемого компонента в анализируемой пробе. Для полноты выделения осадка применяют умеренный избыток осадителя. Если осадитель летуч (на­пример, раствор хлороводородной кислоты), берут двух-, трехкратный избы­ток, который впоследствии удаляют при нагревании осадка. Если осадитель нелетуч (растворы бария хлорида, аммония оксалата, серебра нитрата и т. п.), достаточно его полуторакратного избытка.

 АНАЛИТИЧЕСКИЕ ВЕСЫ.  ПРАВИЛА ОБРАЩЕНИЯ С НИМИ

      Аналитические весы - это точный физический прибор, пользование кото­рым допускается при строгом соблюдении правил, обеспечивающих необхо­димую воспроизводимость и точность взвешивания.

     Правила обращения с аналитическими весами включают следующие основ­ные требования:

1. Весы должны быть установлены на жестко закрепленной поверхности,

зaщищающей их от различных потрясений, и в специально оборудованном    помещении  -  весовой комнате.

2. Недопустимы резкие колебания температуры, действие прямых сол­нечных лучей, а также воздействие на аналитические весы химических веществ.

3. Предельно допустимая нагрузка аналитических весов должна быть не более 200 г.

4. При взвешивании предметов на аналитических весах необходимо, что­бы они имели температуру весовой комнаты.

5. Взвешиваемое вещество помещают на левую чашку весов в специаль­ной таре (бюксы, тигли, часовое стекло). Гири аналитического разно­веса помещают на правую чашку весов.

6. Взвешиваемые предметы и гири вносят через боковые дверцы весов (шторки). Взвешивание производят только при закрытых дверцах весов.

7. Гири аналитического разновеса берут только специально предназна­ченным пинцетом. Все операции со сменой разновеса производят при полном арретировании весов.

8. До и после каждого взвешивания необходимо проверять нулевую точку весов.

9. Во избежание перекоса чашек весов гири и взвешиваемые предметы помещают в центр чашек.

10. Запись результатов взвешивания проводят по пустым гнездам аналити­ческого разновеса и по данным барабанов с десятыми и сотыми доля­ми грамма. Третий и четвертый знаки после запятой снимают со светя­щегося табло.

11. По окончании взвешивания необходимо убедиться, что весы арретиро­ваны, полностью разгружены и дверцы футляра плотно закрыты.

12. Для уменьшения ошибки взвешивания необходимо пользоваться ана­литическим разновесом, предназначенным для строго определенных аналитических весов.

      Следует отметить, что даже при соблюдении всех упомянутых правил

могут возникать ошибки взвешивания, зависящие от различных причин:

       вызванные неравноплечестью коромысла весов;

       за счет изменения массы тела в процессе взвешивания;

       за счет взвешивания в воздухе, а не в вакууме;

       вызванные несоответствием массы гирь (разновесов) их номинальной

массе.

ПРИМЕНЕНИЕ ГРАВИМЕТРИЧЕСКОГО МЕТОДА АНАЛИЗА

      Использование неорганических осадителей позволяет получать в виде гра­виметрической формы либо соли, либо оксиды определяемых веществ. Неор­ганические реагенты не отличаются специфичностью, но в анализе наиболее часто используют: NH4ОH  (Fе2О3,  SnО2);  H2S  (CuS,  ZnS или ZnSО4,  As2S3 или As2S5, Вi2S3);  (NH4)2S  (HgS);  NH4H24  ( Mg2P2О7,  Al34,  Мn2Р2О7);  H24  (PbSО4,  BaSО4,  SrSО4);  Н2С2О4  (СаО);  НСl  (AgCl,  Hg2Cl2,  Na в виде NaCl из бутанола);  AgNО3 ( AgCl,  AgBr,  AgI);  BaCl2  (BaSO4) и пр.

      Иногда в основу гравиметрических определений положено восстановле­ние определяемого компонента до элемента, который служит гравиметриче­ской формой.

      Для гравиметрического определения неорганических веществ предложен ряд органических реагентов, которые, как правило, обладают большей селек­тивностью. Известны два класса органических реагентов. Первые образуют малорас­творимые комплексные (координационные) соединения и содержат не менее двух функциональных групп, имеющих пару неподеленных электронов. Еще их называют хелатообразующими реагентами, например 8-оксихинолин осаж­дает более двадцати катионов:

                                                                                    

                                                                      OH 

      Растворимость оксихинолятов металлов изменяется в широких пределах в зависимости от природы катиона, значения рН среды.

      В 1885 году бьл предложен l-нитрозо-2-нафтол - один из первых селек­тивных органических реагентов, который широко используют для опреде­ления кобальта в присутствии никеля, а также для определения ионов висму­та(3), хрома (III), ртути (II), олова (IV) и т. п.:

                                                                                NO               

OH  

 

            Диацетилдиоксим  (диметилглиоксим) отличается высокой селективностью, и его широко используют для гравиметрического определения малых концентраций никеля:

CH3 CCCH3

                                                                                                                           │     │

                                                                                                                   OH - N      N - OH