Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
biletiki_po_himii.docx
Скачиваний:
154
Добавлен:
11.12.2018
Размер:
434.6 Кб
Скачать

26) Понятие о химической термодинамике. Экзо- и эндотермические реакции. Применение электролиза в технике

Электролиз находит широкое применение в технике.

Очистка или рафинирование металлов. Процесс происходит в электролитической ванне. Анодом служит металл, подлежащий очистке, катодом — тонкая пластинка из чистого металла, а электролитом — раствор соли данного металла, например, при рафинировании меди — раствор медного купороса. В загрязненных металлах могут содержаться ценные примеси. Так, в меди часто содержится никель и серебро. Для того чтобы на катоде выделялся только чистый металл, необходимо учитывать, что выделение каждого вещества начинается лишь при некоторой определенной разности потенциалов между электродами, называемой "потенциалом разложения". При надлежащем ее выборе из раствора медного купороса на катоде выделяется чистая медь, а примеси выпадают в виде осадка или переходят в раствор.

Электрометаллургия. Некоторые металлы, например, алюминий, получают методом электролиза из расплавленной руды. Электролитической ванной и одновременно катодом служит железный ящик с угольным полом, а анодом — угольные стержни. Температура руды (около 900 °С) поддерживается протекающим в ней током. Расплавленный алюминий опускается на дно ящика, откуда его через особое отверстие выпускают в формы для отливки.

Гальваностегия — электролитический способ покрытия металлических изделий слоем благородного или другого металла (золота, платины), не поддающегося окислению. Например, при никелировании предмета он сам служит катодом, кусок никеля — анодом. Пропуская через электролитическую ванну в течение некоторого времени электрический ток, покрывают предмет слоем никеля нужной толщины.

Гальванопластика, или электролитическое осаждение металла на поверхности предмета для воспроизведения его формы, была изобретена в 1837 г. русским ученым Б. С. Якоби, предложившим использовать электролиз для получения металлических отпечатков рельефных предметов (медалей, монет и др.). С предмета снимают слепок из воска или вырезают выпуклое изображение на деревянной доске и делают его проводящим, покрывая слоем графита. Затем опускают слепок или доску в качестве катода в электролит. Анодом служит кусок металла, используемого для осаждения. Этим способом изготовляют, например, типографские клише.

Электролитическим путем получают тяжелую воду (D2O), в которой атомы водорода заменены атомами его изотопа — дейтерия (D) с атомной массой 2.

Электролиз, совокупность электрохимических окислительно-восстановительных процессов, происходящих при прохождении электрического тока через электролит с погруженными в него электродами. На катоде катионы восстанавливаются в ионы более низкой степени окисления или в атомы, например: Fe3+ + e Fe2+, Сu2+ + 2е Сu (е - электрон). Нейтральные молекулы могут участвовать в превращениях на катоде непосредственно или реагировать с продуктами катодного процесса, которые рассматриваются в этом случае как промежуточные вещества электролиза. На аноде происходит окисление ионов или молекул, поступающих из объема электролита или принадлежащих материалу анода; в последнем случае анод растворяется или окисляется (см. Анодное растворение). Напр.:

Электролиз включает два процесса: миграцию реагирующих частиц под действием электрического поля к поверхности электрода и переход заряда с частицы на электрод или с электрода на частицу. Миграция ионов определяется их подвижностью и числами переноса (см. Электропроводность электролитов). Процесс переноса нескольких электрических зарядов осуществляется, как правило, в виде последовательности одноэлектронных реакций, т. е. постадийно, с образованием промежуточных частиц (ионов или радикалов), которые иногда существуют некоторое время на электроде в адсорбированном состоянии.

Скорости электродных реакций зависят от состава и концентрации электролита, материала электродов, электродного потенциала, температуры, гидродинамичечских условий (см. Электрохимическая кинетика). Мерой скорости служит плотность тока - количество переносимых электрических зарядов через единицу площади поверхности электрода в единицу времени. Количество образующихся при электролизt продуктов определяется законами Фарадея. Для выделения 1 грамм-эквивалента вещества на электроде необходимо количество электричества, равное 26,8 А* ч. Если на каждом из электродов одновременно образуется несколько продуктов в результате ряда электрохимических реакций, доля тока (в %), идущая на образование продукта одной из реакций, называется выходом данного продукта по току.

В электродном процессе участвуют вещества, требующие для переноса заряда наименьшего электрического потенциала; это могут быть не те вещества, которые обусловливают перенос электричества в объеме раствора. Например, при электролизе водного раствора NaCl в миграции участвуют ионы Na+ и Сl-, однако на твердых катодах ионы Na+ не разряжаются, а протекает энергетически более выгодный процесс разряда протонированных молекул воды: Н3О+ + е → 1/2H2 + Н2О.

Применение электролиза. Получение целевых продуктов путем электролиза позволяет сравнительно просто (регулируя силу тока) управлять скоростью и направленностью процесса, благодаря чему можно осуществлять процессы как в самых "мягких", так и в предельно "жестких" условиях окисления или восстановления, получая сильнейшие окислители и восстановители. Путем электролиза производят Н2 и О2 из воды, Сl2 из водных растворов NaCl, F2 из расплава KF в KH2F3.

Гидроэлектрометаллургия - важная отрасль металлургии цветных металлов (Сu, Bi, Sb, Sn, Pb, Ni, Co, Cd, Zn); она применяется также для получения благородных и рассеянных металлов, Мn, Сr. Электролиз используют непосредственно для катодного выделения металла после того, как он переведен из руды в раствор, а раствор подвергнут очистке. Такой процесс называется электроэкстракцией. Электролиз применяют также для очистки металла – электролитического рафинирования (электрорафинирование). Этот процесс состоит в анодном растворении загрязненного металла и в последующем его катодном осаждении. Рафинирование и электроэкстракцию проводят с жидкими электродами из ртути и амальгам (амальгамная металлургия) и с электродами из твердых металлов.

Электролиз расплавов электролитов - важный способ производства многих металлов. Так, например, алюминий-сырец получают электролизом криолит-глиноземного расплава (Na3AlF6 + Al2O3), очистку сырца осуществляют электролитическим рафинированием. При этом анодом служит расплав Аl, содержащий до 35% Сu (для утяжеления) и потому находящийся на дне ванны электролизера. Средний жидкий слой ванны содержит ВаСl2, AlF3 и NaF, a верхний - расплавленный рафинированный Аl и служит катодом.

Электролиз расплава хлорида магния или обезвоженного карналлита - наиболее распространенный способ получения Mg. В промышленном масштабе электролиз расплавов используют для получения щелочных и щелочно-земельных металлов, Be, Ti, W, Mo, Zr, U и др.

К электролитическим способам получения металлов относят также восстановление ионов металла другим, более электроотрицательным металлом. Выделение металлов восстановлением их водородом также часто включает стадии электролиза- электрохимическую ионизацию водорода и осаждение ионов металла за счет освобождающихся при этом электронов. Важную роль играют процессы совместного выделения или растворения нескольких металлов, совместного выделения металлов и молекулярного водорода на катоде и адсорбции компонентов раствора на электродах. Электролиз используют для приготовления металлических порошков с заданными свойствами.

Другие важнейшие применения электролиза- гальванотехника, электросинтез, электрохимическая обработка металлов, защита от коррозии (см. Электрохимическая защита).

Электролизеры. Конструкция промышленных аппаратов для проведения электролитических процессов определяется характером процесса. В гидрометаллургии и гальванотехнике используют преимущественно так называемые ящичные электролизеры, представляющие собой открытую емкость с электролитом, в которой размещают чередующиеся катоды и аноды, соединенные соотвктственно с отрицательными и положительными полюсами источника постоянного тока. Для изготовления анодов применяют графит, углеграфитовые материалы, платину, оксиды железа, свинца, никеля, свинец и его сплавы; используют малоизнашивающиеся титановые аноды с активным покрытием из смеси оксидов рутения и титана (оксидные рутениево-титановые аноды, или ОРТА), а также из платины и ее сплавов. Для катодов в большинстве электролизеров применяют сталь, в т.ч. с различными защитными покрытиями с учетом агрессивности электролита и продуктов электролиза, температуры и др. условий процесса. Некоторые электролизеры работают в условиях высоких давлений, например, разложение воды ведется под давлением до 4 МПа; разрабатываются электролизеры и для более высоких давлений. В современных электролизерах широко применяют пластические массы, стекло и стеклопластики, керамику.

Во многих электрохимических производствах требуется разделение катодного и анодного пространств, которое осуществляют с помощью диафрагм, проницаемых для ионов, но затрудняющих механическое смешение и диффузию. При этом достигается разделение жидких и газообразных продуктов, образующихся на электродах или в объеме раствора, предотвращается участие исходных, промежуточных и конечных продуктов электролиза в реакциях на электроде противоположного знака и в приэлектродном пространстве. В пористых диафрагмах через микропоры переносятся как катионы, так и анионы в количествах, соответствующих числам переноса. В ионообменных диафрагмах (мембранах) происходит перенос либо только катионов, либо анионов, в зависимости от природы входящих в их состав ионогенных групп. При синтезе сильных окислителей используют обычно без-диафрагменные электролизеры, но в раствор электролита добавляют K2Сr2О7. В процессе электролиза на катоде образуется пористая хромит-хроматная пленка, выполняющая функции диафрагмы. При получении хлора используют катод в виде стальной сетки, на которую наносят слой асбеста, играющий роль диафрагмы. В процессе электролиза рассол подают в анодную камеру, а из анодной камеры выводят раствор NaOH.

Электролизер, применяемый для получения магния, алюминия, щелочных и щелочно-земельных металлов, представляет собой футерованную огнеупорным материалом ванну, на дне которой находится расплавленный металл, служащий катодом, аноды же в виде блоков располагают над слоем жидкого металла. В процессах мембранного получения хлора, в электросинтезе используют электролизеры фильтр-прессного типа, собранные из отдельных рам, между которыми помещены ионообменные мембраны.

По характеру подключения к источнику питания различают монополярные и биполярные электролизеры (рис.). Монополярный электролизер состоит из одной электролитической ячейки с электродами одной полярности, каждый из которых может состоять из нескольких элементов, включенных параллельно в цепь тока. Биполярный электролизер имеет большое число ячеек (до 100-160), включенных последовательно в цепь тока, причем каждый электрод, за исключением двух крайних, работает одной стороной как катод, а другой как анод. Монополярные электролизеры обычно рассчитаны на большой ток и малые напряжения, биполярные - на сравнительно небольшой ток и высокие напряжения. Современные электролизеры допускают высокую токовую нагрузку: монополярные до 400-500 кА, биполярные - эквивалентную 1600 кА.

Схема подключения к источнику внешнего тока монополярного (а)и биполярного (б)электролизеров.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]