Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сетевые технологии (часть 1).doc
Скачиваний:
86
Добавлен:
10.12.2018
Размер:
884.22 Кб
Скачать

4.8. Беспроводные физические среды

Спектр используемых в сетях электромагнитных волн делится на следующие частотные диапазоны (таблица 4.2.).

Таблица 4.2. Частотные диапазоны беспроводной среды.

Номер

Название диапазона

Частота

Длина волны

1

Высокочастотный

3 – 30 МГц

100 – 10 м

2

VHF

50 - 100 Мгц

6 - 3 м

3

УВЧ (UHF)

400-1000 МГц

75-30 см

4

Микроволновый

3 109 – 1011 Гц

10 см – 3 мм

5

Миллиметровый

1011 – 1013Гц

3 мм – 0,3 мм

6

Инфракрасный

1012 – 6 1014

0,3 мм – 0,5 

Далее следуют диапазоны видимого света, ультрафиолетового излучения, рентгеновских и гамма-лучей.

Беспроводные среды используются там, где не существует кабельных или оптоволоконных каналов или их создание по каким-то причинам невозможно или слишком дорого. Низкие частоты, например 300 МГц, мало привлекательны из-за ограничений пропускной способности, а большие частоты более 30 ГГц работоспособны для расстояний не более 5км из-за поглощения радиоволн в атмосфере. При использовании 4, 5 и 6 диапазонов следует иметь в виду, что любые препятствия на пути волн приведут к их практически полному поглощению. Для этих диапазонов заметное влияние оказывает и поглощение в атмосфере.

Основную роль в поглощении радиоволн играет вода. По этой причине сильный дождь, град или снег могут привести к прерыванию связи. Атмосферные шумы, связанные в основном с грозовыми разрядами, влияют на радиосвязь при низких частотах до 2 МГц. Галактический шум, приходящий из-за пределов солнечной системы влияет на радиосвязь вплоть до 200 ГГц.

При частоте выше 100 МГц волна распространяется в строго определенном направлении и может быть сфокусирована с помощью параболической антенны. Для устройств, работающих на частотах 2.4 ГГц и выше, как правило, используются направленные антенны и необходима прямая видимость между приемником и передатчиком.

Радиоканалы для передачи информации используют частотные диапазоны 902-928 МГц на расстояниях до 10 км с пропускной способностью до 64кбит/с, а также 2,4 ГГц и 12 ГГц на расстояниях до 50 км, с пропускной способностью до 8 Мбит/с. Стремление увеличить пропускную способность канала заставляет использовать все более и более высокие частоты. На сегодня микроволновый диапазон широко используется в телефонии, сотовой телефонии, телевидении и других приложениях. Одним из главных достоинств микроволнового диапазона – нет необходимости в прокладке коммуникаций. Однако микроволны не проходят сквозь здания также как низкочастотные волны. Кроме этого, из-за рефракции в нижних слоях атмосферы, они могут отклоняться от прямого направления. Это обуславливает увеличение задержки и нарушение передачи. Передача на этих частотах зависит от погоды.

Инфракрасное излучение и излучение в миллиметровом диапазоне используется на небольших расстояниях в основном в блоках дистанционного управления. Основной недостаток излучения в этом диапазоне в том, что оно не проходит через преграды. Этот недостаток одновременно является преимуществом, так как излучение в одной комнате не мешает работе систем в других. Кроме того на применение таких частот не надо получать разрешения.

Инфракрасная связь поддерживает передачу данных через инфракрасные соединения с компьютерами и другими устройствами, использующими протоколы IrDA (Infrared Data Association). Она представляет собой недорогой способ соединения компьютеров друг с другом и с различными устройствами. Инфракрасный канал передачи данных устанавливается между двумя инфракрасными портами. Все данные по этому каналу передаются с основного устройства на вторичное (принимающее). Роль основного устройства присваивается динамически при установке связи и сохраняется до закрытия подключения. Ее может выполнять любое пригодное для этого устройство. При соединении двух компьютеров основную роль может взять на себя любой из них. Однако есть устройства, которые способны выполнять только вторичную роль, например, принтеры.

Видимый диапазон также используется передачи данных посредством лазера. Монохромное когерентное излучение лазера легко фокусируется, но дождь, туман или даже конвекционные потоки воздуха сильно влияют на качество связи.