Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на экз.колледж.doc
Скачиваний:
5
Добавлен:
27.10.2018
Размер:
3.02 Mб
Скачать

13) Классификация и свойства солей

Солями называются сложные вещества, состоящие из кислотных остатков и атомов металлов или других атомных группировок. При диссоциации солей образуются катионы металлов (а также катион аммония NH4) и анионы кислотных остатков.

При полном замещении атомов водорода в молекуле кислоты образуются средние (или нормальные) соли, при неполном - кислые соли. Существуют несколько групп солей.

При частичном замещении групп OH- в молекуле многокислотного гидроксида кислотными остатками образуются основные соли, например, KNO3, Na2CO3.

Кислые соли образуются многоосновными кислотами в случае их неполной нейтрализации гидроксидом, например, NaHCO3, Ca(HCO3)2. Кислые соли могут образовывать только многоосновные кислоты, одноосновные кислоты кислых солей образовать не могут.

Если атомы водорода в многоосновной кислоте замещены атомами не одного, а двух различных металлов, образуются двойные соли, например, KAl(SO4)2, NaKCO3.

При частичном замещении групп OH- в молекуле многокислотного основания кислотными остатками образуются основные соли: Zn(OH)Cl, Al(OH)SO4.

Также существует группа комплексных солей, состав которых нельзя объяснить, используя обычные представления о валентности. Строение и свойства этих соединений изучаются в высшей школе.

Название соли каждой кислоты происходит от латинского названия кислотного остатка. Например, соли азотистой кислоты называются нитритами: нитрит калия KNO2, нитрит магния Mg(NO2) 2. Названия солей бескислородных кислот оканчиваются на “ид”, например, сульфид калия K2S. В случае, когда соль образована металлом, имеющим разную валентность, то она указывается после названия металла римской цифрой в скобках. Например, FeCl2 - хлорид железа (II), Fe2(SO4)3 - сульфат железа (III). Если в кислой соли в кислотный остаток входит один атом водорода, то к названию соли добавляются частицы “би” или “гидро”, а если два атома, то “дигидро”: Mg(HCO3)2 - бикарбонат, или гидрокарбонат магния, Na2HPO4 - гидрофосфат натрия, NaH2PO4 - дигидрофосфат натрия.

Соли являются твердыми веществами с самой различной растворимостью в воде. По этому критерию их условно делят на растворимые, малорастворимые и практически нерастворимые.

Как электролиты средние соли в водных растворах диссоциируют на катионы металлов и анионы кислотных остатков:

MgSO4 → Mg2+ + SO42-

Кислые и основные соли диссоциируют ступенчато. У кислых солей вначале происходит диссоциация на катион металла и анион кислотного остатка, после чего в значительно меньшей степени, диссоциирует анион с образованием катионов водорода. У основных солей вначале отщепляются кислотные остатки, а затем, также в значительно меньшей степени, ионы OHH-.

Химические свойства солей во многом зависят от их химической природы.

Если соль образована летучими или слабыми кислотами наподобие HCl, H2S, H2СO3, то она взаимодействует с нелетучими кислотами, например. H2SO4, с выделением летучей или слабой кислоты и образованием новой соли:

2NaCl + H2SO4 = Na2SO4 + 2HCl

Ca3(PO4) 2 + 3H2SO4 = 3CaSO4 + 2H3PO4

В водных растворах соли могут вступать в реакцию с гидроксидами, образуя новую соль и гидроксид при условии, если один из продуктов реакции будет выпадать в осадок:

CuCl2 +2NaOH = Cu(OH)2 + 2NaCl

Na2SO4 + Ba(OH)2 = BaSO4+ 2NaOH

При подобных условиях в водных растворах соли могут вступать в реакцию друг с другом, образуя новые соли:

KCl + AgNO3 = AgCl+ KClO3

Соли также реагируют в водных растворах с металлами, стоящими в ряду активности до металла, входящего в состав соли:

Zn + CuSO4 = ZnSO4 + Cu

К наиболее общим способам получения солей относятся химические взаимодействия: металлов с неметаллами 2Na + Cl2 = 2NaCl

металлов с кислотами: Mg + H2SO4 = MgSO4 + H2

основных оксидов с кислотными: CaO + CO2 = CaCO3.

кислот с солями: H2SO4 + BaCl2 = BaSO4 + 2HCl.

оснований с солями: 2NaOH + CuSO4 = Na2SO4 + Cu (ОН)2

кислот с основаниями: NaOH + HCl = NaCl + H2O

основных оксидов с кислотами: H2SO4 + CaO = CaSO4 + H2O

кислотных оксидов с основаниями: Ca(OH)2 + CO2 = CaCO3 + H2O

двух солей между собой: K2SO4 + BaCl2 = BaSO4 + 2KCl

металлов с солями: Fe+ CuSO4 = FeSO4 + Cu

Кислые соли получают при неполной нейтрализации кислоты основанием, при этом гидроксид берут в количестве, недостаточном для полной нейтрализации кислоты: NaOH + H2S = NaHS + H2O

Основные соли получают частичной нейтрализацией основания кислотой:

Zn(ОН) 2 + HCl = Zn(ОН)Cl + H2O

Степень гидролиза соли выражается отношением числа гидролизованных молекул к общему числк молекул соли в растворе. Степень гидролиза увеличивается с повышением температуры и разбавлением.

Соли, образованные сильным основанием и сильной кислотой (NaCl, KCl, Ba(NO3)2, Na2SO4 и др.), гидролизу в растворе не подвергаются, т.к. не образуется слабодиссоциированных соединений (катионы сильных оснований и анионы сильных кислот не могут связывать ионы воды). Реакция растворов этих солей остается практически нейтральной, рН = 7.

14) Гидролизу подвергаются соли, образованные: а) сильным основанием и слабой кислотой; б) сильной кислотой и слабым основанием; в) слабым основанием и слабой кислотой.

а) Гидролиз солей, образованных сильным основанием и слабой кислотой протекает всегда по аниону, заряд которого определяет число теоретических ступеней гидролиза. Реакция среды их водныз растворов - щелочная (рН > 7).

б) Гидролиз солей, образованных сильной кислотой и слабым основанием протекает всегда по катиону, заряд которого определяет число теоретических ступений гидролиза. Реакция среды их водных растворов кислая (рН < 7).

в) Гидролиз солей, образованных слабым основанием и слабой кислотой протекает одновременно по катиону и по аниону, образуя сразу два слабых электролита. Реакция среды водного раствора такой соли устанавливается путем сравнения констант диссоциации образующихся слабых электролитов. Если константы диссоциации основания и кислоты близки, то реакция раствора остается практически нейтральной, если же они различаются на несколько порядков, то среда может быть слабокислой или слабощелочной - в зависимости от силы кислоты и основания.

Полный и необратимый гидролиз солей. Некоторые соли, образованные слабыми летучими кислотами и многокислотными гидроксидами не могут находиться в виде водных растворов из-за полного необратимого взаимодействия с водой, сопровождающегося одновременным выделением газа и выпадением осадка.

При взаимодействии сульфида алюминия с водой наблюдается образование осадка гидроксида алюминия и выделение сероводорода

Al2S3 + 6H2O = 2Al(OH)3↓ + H2S↑

Алгоритм написания уравнений гидролиза.

1. Определяем тип гидролиза, “правило цепочки”: цепочка рвется по слабому звену, гидролиз идет по иону слабого электролита.

Пример 1. Гидролиз сульфата меди(II): CuSO4 = Cu2+ + SO42–

Соль образована катионом слабого основания (подчеркиваем) и анионом сильной кислоты. Гидролиз по катиону.

2. Пишем ионное уравнение гидролиза, определяем среду

Cu2+ + H-OH → CuOH+ + H+;

образуется катион гидроксомеди(II) и ион водорода, среда кислая

3. Составляем молекулярное уравнение. Надо учитывать, что составление такого уравнения есть некоторая формальная задача. Из положительных и отрицательных частиц находящихся в растворе, мы составляем нейтральные частицы, существующие только на бумаге. В данном случае мы можем составить формулу (CuOH)2SO4, но для этого наше ионное уравнение мы должны мысленно умножить на два. Получаем:

2CuSO4 + 2H2O → (CuOH)2SO4 + H2SO4

Например:

1. Соль, образованная слабым основанием и сильной кислотой (гидролиз по катиону).

NH4Cl+HOH<—>NH4OH+HCl

NH4+ Cl-+HOH<—>NH4OH+H++ Cl-

NH4+ +HOH<—>NH4OH+H+

В растворе накапливаются ионы H+, в результате чего реакция смещается в кислую сторону, рН в растворах солей подобного типа меньше7.

2. Соль, образованная сильным основанием и слабой кислотой (гидролиз по аниону).

CH3COONa+HOH<—>CH3COOH+NaOH

CH3COO-+Na++HOH<—>CH3COOH+Na++OH-

CH3COO-+HOH<—>CH3COOH+OH-

В данном случае гидролиз ведет к увеличению концентраций ионов в растворе, среда щелочная, рН>7.

3. Соль, образованная слабой кислотой и слабым основанием (гидролиз по катиону и по аниону).

CH3COONH4 +HOH<—>CH3COOH+NH4OH

CH3COO- + NH4+ +HOH<—>CH3COOH+NH4OH

В результате гидролиза ацетата аммония происходит образование двух слабых электролитов, раствор оказывается близким к нейтральному, рН~7.

4. Соль, образованная сильным основанием и сильной кислотой.

Соли подобного типа гидролизу не подвергаются. Их ионы не образуют с ионами H+ и OH-воды слабодиссоциируюших или труднорастворимых соединений, равновесие между ионами и молекулами воды не нарушается и раствор остается нейтральным, рН равен 7.

15)

Между классами существует важная связь, которую называют генетической ("генезиз" по-гречески обозначает "происхождение"). Эта связь заключается в том, что из веществ одного класса можно получить вещества других классов.

Существует два основных пути генетических связей между веществами: один из них начинается металлами, другой – неметаллами.

Например, сульфат кальция CaSO4 можно получить либо из металла кальция, либо другим путем – из неметалла серы:

16) окислительно-восстановительные реакции (ОВР) (реакции окисления-восстановления) происходят с изменением степени окисления атомов, входящих в состав реагирующих веществ. При окислении веществ степень окисления элементов возрастает, при восстановлении - понижается.

при этом окислитель восстанавливается, а восстановитель - окисляется. При протекании реакций в гальваническом элементе переход электронов осуществляется по проводнику, соединяющему электроды элемента, и изменение энергии Гиббса ΔG в данной реакции может быть превращено в полезную работу. В отличие от реакций ионного обмена окислительно-восстановительные реакции (ОВР) в водных растворах протекают, как правило, не мгновенно.

Составление уравнений окислительно-восстановительных реакций

A ) Электронный баланс - метод нахождения коэффициентов в уравнениях окислительно-восстановительных реакций, в котором рассматривается обмен электронами между атомами элементов, изменяющих свою степень окисления. Число электронов, отданное восстановителем равно числу электронов, получаемых окислителем.

Уравнение составляется в несколько стадий:

1. Записывают схему реакции.

KMnO4 + HCl → KCl + MnCl2 + Cl2 + H2O

2. Проставляют степени окисления над знаками элементов, которые меняются.

KMn+7O4 + HCl-1→ KCl + Mn+2Cl2 + Cl20 + H2O

3. Выделяют элементы, изменяющие степени окисления и определяют число электронов, приобретенных окислителем и отдаваемых восстановителем.

Mn+7 + 5ē → Mn+2

2Cl- - 2ē → Cl20

4. Уравнивают число приобретенных и отдаваемых электронов, устанавливая тем самым коэффициенты для соединений, в которых присутствуют элементы, изменяющие степень окисления.

Mn+7 + 5ē ® Mn+2 2

2Cl- - 2ē ® Cl 0 5

––––––––––––––––––––––––

2Mn+7 + 10Cl- → 2Mn+2 + 5Cl20

5. Подбирают коэффициенты для всех остальных участников реакции.

2KMn+7O4 + 16HCl- → 2KCl + 2Mn+2Cl2 + 5Cl20 + 8H2O

Б) электронно-ионный баланс (метод полуреакций) метод нахождения коэффициентов, в котором рассматривается обмен электронами между ионами в растворе с учетом характера среды:

2Cl- – 2ē → Cl20 5

MnO4- + 8H++ 5ē → Mn2+ + 4H2O 2

7+ 2+

––––––––––––––––––––––––––––––––––––––

10Cl- + 2MnO4- + 16H+ → 5Cl20 + 2Mn2+ + 8H2O

(для уравнивания ионной полуреакции используют H+, OH- или воду)

17) ВОДОРОД, Н (лат. hydrogenium), самый легкий газообразный химический элемент – член IA подгруппы периодической системы элементов, иногда его относят к VIIA подгруппе. В нормальных условиях водород – бесцветный газ, без запаха и вкуса, очень легкий: 1 л водорода при 0° C и атмосферном давлении имеет массу 0,08987 г

Соединения металлов с водородом (они называются гидридами металлов) представляют собой твердые вещества. Гидриды металлов можно получать непосредственно из металла и водорода.

Гидриды бурно реагируют с водой с образованием газообразного водорода:

Это еще один удобный способ получения газообразного водорода. Источником водородных атомов являются как гидрид металла, так и вода.

Соединения водорода с неметаллами в большинстве являются газами. Исключение составляет вода.

Из всех соединений водорода одним из важнейших является аммиак, который получают реакцией водорода с азотом при высокой температуре, давлении и в присутствии катализатора:

Восстановительные свойства водорода используют для получения чистых металлов из их оксидов. Например, при нагревании оксида меди CuO в токе водорода образуется вода и порошок металлической меди:

Для некоторых очень тугоплавких металлов восстановление их оксидов водородом оказывается удобным и экономичным способом получения. Например, металл вольфрам, из которого делают нити лампочек накаливания, получают с помощью реакции:

WO3 + 3 H2 = W + 3 H2O

18) Молекула воды имеет следующее электронное строение:

Две электронные пары образуют полярные ковалентные связи между атомами водорода и кислорода, а оставшиеся две электронные пары остаются свободными и называются неподеленными. Молекула воды имеет угловое строение, угол Н–О–Н составляет 104,5 градусов.

Наличие в молекулах H2O неподеленных электронных пар у атомов кислорода и положительно заряженных атомов водорода приводит к совершенно особому взаимодействию между молекулами, называемому ВОДОРОДНОЙ СВЯЗЬЮ (рис. 7-1). В отличие от всех уже знакомых нам видов химической связи эта связь – межмолекулярная.

Водородная связь (на рисунке она обозначена пунктиром) возникает при взаимодействии обедненного электронами атома водорода одной молекулы воды с неподеленной электронной парой атома кислорода другой молекулы воды.

Рис. 7-1. Водородные связи между молекулами воды (обозначены пунктиром).

Водородная связь является частным случаем межмолекулярых связей. Считается, что она обусловлена в основном электростатическими силами. Для возникновения водородной связи нужно, чтобы в молекуле был один или несколько атомов водорода, связанных с небольшими, но электроотрицательными атомами, например: O, N, F. Важно, чтобы у этих электроотрицательных атомов были неподеленные электронные пары. Поэтому водородные связи характерны для таких веществ, как вода H2O, аммиак NH3, фтороводород HF. Например, молекулы HF связаны между собой водородными связями, которые на рисунке показаны пунктирными линиями:

Водородные связи приблизительно в 20 раз менее прочные, чем ковалентные, но именно они заставляют воду быть жидкостью или льдом (а не газом) в обычных условиях. Водородные связи разрушаются только тогда, когда жидкая вода переходит в пар.

При температурах выше 0 °С (но ниже температуры кипения) вода уже не имеет такую упорядоченную межмолекулярную структуру, как показано на рис. 7-1. Поэтому в жидкой воде молекулы связаны между собой лишь в отдельные агрегаты из нескольких молекул. Эти агрегаты могут свободно двигаться рядом друг с другом, образуя подвижную жидкость. Но при понижении температуры упорядоченность становится все больше и больше, а агрегаты – все крупнее. Наконец, образуется лед, который имеет именно такую упорядоченную структуру, которая показана на рисунке.

В кристалле льда между молекулами остаются пустоты. Объем этих пустот больше, чем размер отдельной молекулы Н2О. Поэтому лед имеет меньшую плотность, чем жидкая вода и плавает на поверхности воды. Большинство же других веществ при замерзании увеличивает свою плотность.

Таким образом, водородные связи придают воде еще одно уникальное свойство, без которого вряд ли могла бы существовать разнообразная жизнь в тех районах Земли, где температура зимой понижается ниже 0 °С. Если бы лед тонул в воде, то зимой все водоемы промерзали бы до самого дна. Трудно ожидать, что рыбы согласились бы жить в таких условиях. Человек мог бы растапливать лед, превращая его в воду для своих нужд, но это потребовало бы огромных затрат дополнительной энергии.

** Еще одно красивое проявление водородных связей – голубой цвет чистой воды в ее толще. Когда одна молекула воды колеблется, она заставляет колебаться и связанные с ней водородной связью другие молекулы. На возбуждение этих колебаний расходуются красные лучи солнечного спектра, как наиболее подходящие по энергии. Таким образом, из солнечного спектра "отфильтровываются" красные лучи – их энергия поглощается и рассеивается колеблющимися молекулами воды в виде тепла.

В белом солнечном свете различные цвета как бы уравновешивают друг друга. Поэтому солнечный свет кажется глазу "белым" – лишенным цвета. Если "отфильтровать" лучи одного участка спектра, то начинает проступать другой – в данном случае голубой участок спектра. Он и окрашивает воду в красивый голубой цвет. Но для этого требуется, чтобы солнечный луч прошел не менее чем через 2-х метровую толщу чистой воды и "потерял" достаточно много красных лучей.

По химическим свойствам вода - достаточно активное вещество, в подходящих условиях она реагирует со многими металлами и неметаллами, основными и кислотными оксидами:

2H2O + 2Na = 2NaOH + H2

H2O + Cl2 = HClO + HCl

H2O + BaO = Ba(OH)2

3H2O + P2O5 = 2H3PO4

Благодаря полярности молекул воды в ней растворяются и диссоциируют многие ионные и ковалентные вещества типа оснований, кислот и солей, большинство солей вступает с водой в реакции обратимого гидролиза. Вода как растворитель способствует протеканию огромного количества обменных и окислительно-восстановительных реакций.

Кристаллогидраты, кристаллы, включающие молекулы воды. Многие соли, а также кислоты и основания выпадают из водных растворов в виде К. Типичными К. являются многие природные минералы, например гипс CaSO4·2H2O, карналлит MgCl2·KCl·6H2O.

Со многими безводными солям вода образует кристаллогидраты, один из методов обнаружения воды основан на переходе во влажной атмосфере белого сульфата меди(II) CuSO4 в голубой медный купорос CuSO4 . 5H2O.

19) При обычных условиях хлор — газ желто-зеленого цвета с резким запахом, ядовит. Он в 2,5 раза тяжелее воздуха. В 1 объеме воды при 20 °С растворяется около 2 объемов хлора. Такой раствор называется хлорной водой. При атмосферном давлении хлор при -34 °С переходит в жидкое состояние, а при -101 °С затвердевает. При комнатной температуре он переходит в жидкое состоянии только при давлении 600 кПа (6 атм). Хлор хорошо растворим во многих органических растворителях, особенно в тетрахлориде углерода, с которым не взаимодействует.

Химические свойства. На внешнем электронном уровне атома хлора находятся 7 электронов (s2p5), поэтому он легко присоединяет электрон, образуя анион Сl- . Благодаря наличию незаполненного d-уровня в атоме хлора могут появляться 1, 3, 5 и 7 неспаренных электронов, поэтому в кислородсодержащих соединениях он может иметь степень окисления +1, +3, +5 и +7.

В отсутствие влаги хлор довольно инертен, но в присутствии даже следов влаги активность его резко возрастает. 0н хорошо взаимодействует с металлами:

2 Fе + 3 С12 = 2 FеС13 (хлорид железа (III)

Cu + С12 = СuС12 (хлорид меди (II)

и многими неметаллами:

Н2 + С12 = 2 НСl (хлороводород)

2 S + С12 = S2Cl2 (хлорид серы (1))

Si + 2 С12 = SiС14 (хлорид кремния. (IV))

2 Р + 5 С12 = 2 РС15 (хлорид фосфора (V))

С кислородом, углеродом и азотом хлор в непосредственное взаимодействие не вступает.

При растворении хлора в воде образуется две кислоты: хлороводородная, или соляная, и хлорноватистая:

С12 + Н2О = НСl + НСlO

При взаимодействии хлора с холодными растворами щелочей образуются соответствующие соли этих кислот:

С12 + 2 NaOН = NaС1 + NaClО + Н2О

Полученные растворы называются жавелевой водой, которая, как и хлорная вода, обладает сильными окислительными свойствами благодаря наличию иона ClO- и применяется для отбеливания тканей и бумаги. С горячими растворами щелочей хлор образует соответствующие соли соляной и хлорноватой кислот:

3 С12 + 6 NаОН = 5 NаСl + NаС1O3 + 3 Н2О

3 С12 + 6 КОН = 5 КСl + КС1O3 + 3 Н2О

Образовавшийся хлорат калия называется бертолетовой солью.

При нагревании хлор легко взаимодействует со многими органическими веществами. В предельных и ароматических углеводородах он замещает водород, образуя хлорорганическое соединение и хлороводород, а к непредельным присоединяется по месту двойной или тройной связи. При очень высокой температуре хлор полностью отбирает водород у углерода. При этом образуются хлороводород и сажа. Поэтому высокотемпературное хлорирование углеводородов всегда сопровождается сажеобразованием.

Хлор — сильный окислитель, поэтому легко взаимодействует со сложными веществами, в состав которых входят элементы, способные окисляться до более высокого валентного состояния.

2 FеС12 + С12 = 2 FеС13

Н2SO3 + С12 + Н2О = Н24 + 2 НСl

Получение. В лабораторных условиях хлор получают действием концентрированной соляной кислоты на различные окислители, например диоксид марганца (при нагревании), перманганат калия или бертолетову соль:

МnО2 + 4 НСl = МnС12 + С12 + 2 Н2О

2 КМnО4 + 16 НСl = 2 КС1 + 2 МnС12 + 5 С12 + 8 Н2О

КС1O3 + 6 НСl = КС1 + 3 С12 + 3 Н2О

В промышленности хлор получают электролизом растворов, или расплавов хлоридов щелочных металлов. При электролизе расплава хлорида щелочного металла на катоде выделяется щелочной металл, а на аноде — хлор:

2 Nа+ + 2е- = 2 Nа

2 Сl- - 2е- = Сl2

В растворе хлорид щелочного металла диссоциирует на ионы:

NаС1 =Na+ + С1-

Вода как слабый электролит также диссоциирует на ионы:

Н2О = Н+ + OH-

При пропускании электрического тока через такой раствор на катоде из двух катионов — Nа+ и Н+ — разряжается катион менее активного водорода, а на аноде из двух анионов — ОН- и Сl- — хлорид-ион:

2 Н++ 2 е-= Н2

2 Сl -2 е- = С12

По мере протекания электролиза в катодном пространстве накапливаются ионы ОН- и образуется едкий натр. Так как хлор может реагировать со шелочью катодное и анодное пространства разделено полупроницаемой диафрагмой из асбеста.

Применение. Ежегодное мировое потребление хлора превышает 1 млн. т. Он используется для отбеливания бумаги и тканей, обеззараживания питьевой воды, производства различных. ядохимикатов, соляной кислоты, хлорорганических веществ и растворителей, а также в лабораторной практике.

Хлороводород и соляная кислота. Хлороводород представляет собой бесцветный газ с резким, удушливым запахом. При атмосферном давлении и температуре -84 °С он переходит в жидкое состояние, а при -112 °С затвердевает. Хлороводород в 1,26 раза тяжелее воздуха. В 1 л воды при 0 °С растворяется около 500 л хлороводорода.

Сухой хлороводород довольно инертный и не реагирует даже с активными металлами, а в присутствии следов влаги такая реакция протекает довольно энергично.

Хлороводород может присоединяться к непредельным углеводородам по месту двойной или тройной связи, образуя хлорорганические соединения.

В лабораторных условиях хлороводород получают действием концентрированной серной кислоты на сухой хлорид натрия:

NаСl + H24 = NаНSO4 + НСl

2 NаСl + Н2SO4 = Nа2SO4 + 2 НСl

Первая из этих реакций протекает при слабом нагревании, а вторая — при более высокой температуре. Поэтому получать хлороводород в лаборатории лучше по первому уравнению и серной кислоты следует брать столько, сколько требуется для образования гидросульфата натрия.

В промышленности хлороводород получают действием концентрированной серной кислоты на сухой хлорид натрия при высокой температуре (по второму уравнению), а также сжиганием водород в атмосфере хлора:

Н2 + Сl2 = 2 НС1

Хлороводород образуется в значительных количествах как побочный продукт при хлорировании насыщениях и ароматических углеводородов.

Раствор хлороводорода в воде называется соляной кислотой. Это сильная кислота, она реагирует со всеми металлами, стоящими в ряду напряжений левее водорода, с основными и амфотерными оксидами, основаниями и солями:

Fе + 2 НС1 = FеС12 + Н2

СuО + 2 НСl = СuСl2 + Н2О

ZnO + 2 НСl = ZnС12 + Н2О

Fе(ОН)3 + 3 НСl = FеСl3 + 3 H2О

АgNО3 + НСl = АgCl + НNО3

2СO3 + 2 НCl = 2 NаСl + Н2О + СО2

Кроме свойств, присущих сильным кислотам, эта кислота характеризуется также восстановительными свойствами: концентрированная соляная кислота реагирует с различными сильными окислителями с образованием свободного хлора.

Соли соляной кислоты называются х л о р и д а м и. Большинство из них хорошо растворяется в воде и полностью диссоциирует на ионы. Слабораствориными являются хлорид свинца РbСl2, хлорид серебра AgCl, хлорид ртути (I) Нg2Сl2 (каломель) и хлорид мели (I) СuСl.

Cолянyю кислоту получают растворением хлороводорода в воде. Этот процесс осуществляют в специальных поглотительных башнях, в которых жидкость подается сверх вниз, а газ — снизу вверх (принцип противотока). В такой башне свежие порции воды в верхней части башни встречаются с газовым потоком, содержащим уже мало хлороводорода, а газ с высоким содержанием хлороводорода в нижней части башни встречается с концентрированной соляной кислотой. Так как растворимость газа в жидкости прямо пропорциональна концентрации его в газовой фазе и обратно пропорциональна концентрации его в растворе, при этом методе достигается полное извлечение хлороводорода из газа и получение концентрированного раствора соляной кислоты. Насыщенный при комнатной температуре водный раствор хлороводорода может содержать не более 42 масс. % хлороводорода и его плотность не превышает 1,20 г/см3. Поступающая в продажу соляная кислота содержит 36-37 хлороводорода и имеет плотность 1,19 г/см3.

Соляную кислоту хранят и транспортируют в стальных цистернах, покрытых изнутри кислотоупорной резиной, или в стеклянных баллонах.

Хлороводород, соляная кислота и ее соли широко используют в промышленности и лабораторной практике. Хлороводород применяют в органическом синтезе для получения хлорорганических соединений. Соляную кислоту используют для получения солей, травления металлов, а также как реактив в химических лабораториях.

Из солей соляной кислоты наибольшее применение находит:

каменная, или поваренная, соль NаС1. Она используется как сырье для получения хлора, металлического натрия, едкого натра, хлороводорода и соды, а также в пищевой промышленности;

хлорид калия КС1. Применяется как калийное удобрение, а также как сырье для получения других солей калия и едкого кали;

хлорид кальция СаС12. Безводная соль применяется для высушивания газов и многих органических жидкостей и как осушительный агент в эксикаторах. При этом образуется кристаллогидрат СuСl2·nН2О (n = 2-6). Насыщенный водный раствор хлорида кальция используют для обогащения сырья флотационным методом;

хлорид бария ВаС12. Применяется как ядохимикат в сельском хозяйстве;

хлорид цинка ZnCl2. Используется при пайке для снятия пленки оксидов (травление металла), а также для пропитки деревянных предметов с целью предохранения их от гниения при закапывании в землю.

Кислородные соединения хлора. Хлор образует четыре кислородсодержащие кислоты: хлорнотистую, хлористую, хлорноватую и хлорную.

Хлорноватистая кислота НСlO образуется при взаимодействии хлора с водой, а также ее солей с сильными минеральными кислотами. Она относится к слабым кислотам, очень неустойчива. Состав продуктов реакции ее разложения зависит от условий. При сильном освещении хлорноватистой кислоты, наличии в растворе восстановителя, а также длительном стоянии она разлагается с выделением атомарного кислорода:

НСlO = HСl + O

В присутствии водоотнимающих веществ образуется оксид хлора (I):

2 НСlO = 2 Н2О + Сl2O

Cl2О можно считать ангидридом хлорноватистой кислоты. При нагревании хлорноватистая кислота разлагается с образованием двух кислот — соляной и хлорноватой:

3 НСlO = 2 НСl + НСlO3

Поэтому при взаимодействии хлора с горячим раствором щелочи образуется соли не соляной и хлорноватистой, а соляной и хлорноватой кислот:

6 NаОН + 3 Сl2 = 5 NаСl + NаСlО3 + 3 Н2О

Соли хлорноватистой кислоты — г и п о х л о р и т ы — очень сильные окислители. Они образуются при взаимодействии хлора со щелочами на холоду. Одновременно образуются соли соляной кислоты. Из таких смесей наибольшее распространение получили хлорная известь и жавелевая вода.

Хлорная, или белильная, известь СаОСl2, или СаСl(СlO), образуется при взаимодействии хлора с порошкообразным гидроксидом кальция — пушенкой:

Са(ОН)2 + Сl2 = Cl-O-Ca-Cl + H2O

или

2 Са(ОН)2 + 2 Сl2 = СаСl2 + Са(ОСl)2 + 2 Н2О

Качество хлорной извести определяется содержанием в ней гипохлорита. Она обладает очень сильными окислительными свойствами и может окислять даже соли марганца до перманганат:

5 СаОСl2 + 2 Mn(NО3)2 + 3 Са(ОН)2 = Са(МпO4)2 + 5 СаСl2 + 2 Са(NО3)2 + 3 H2O

Под действием углекислого газа, содержащегося в воздухе, она разлагается с выделением хлора:

СаОСl2 + СО2 = СаСО3 + Сl2

или

СаСl2 + Са(ОСl)2 + 2 СО2 = 2 СаСО3 + 2 Сl2

Хлорная известь применяется как отбеливающее и дезинфицирующее

вещество.

Хлористая кислота НСlO2 образуется при действии концентрированной серной кислоты на хлориты щелочных металлов, которые получаются как промежуточные продукты при электролизе растворов хлоридов щелочных металлов в отсутствие диафрагмы между катодным и анодным пространствами. Это слабая, неустойчивая кислота, очень сильный окислитель в кислой среде. При взаимодействии ее с соляной кислотой выделяется хлор:

НСlO2 + 3 НС1 = Сl2 + 2 Н2О

Хлориты натрия используются для получения диоксида хлора, при обеззараживании воды, а также как отбеливаюший агент.

Хлорноватая кислота НСlO3 образуется при действии на ее соли —

х л о р а т ы — серной кислоты. Это очень неустойчивая кислота, очень сильный окислитель. Может существовать только в разбавленных растворах. При упаривании раствора НСlO3 при низкой температуре в вакууме можно получить вязкий раствор, содержащий около 40 % хлорной кислоты. При более высоком содержании кислоты раствор разлагается со взрывом. Разложение со взрывом происходит и при меньшей концентрации в присутствии восстановителей. В разбавленных растворах хлорная кислота проявляет окислительные свойства, причем реакции протекают вполне спокойно:

НСlO3 + 6 НВr = НСl + 3 Вr2 + 3 Н2О

Соли хлорноватой кислоты — хлораты — образуются при электролизе растворов хлоридов в отсутствие диафрагмы между катодным и анодным пространствами, а также при растворении хлора в горячем растворе щелочей, как показано выше. Образующийся при электролизе хлорат калия (бертолетова соль) слабо растворяется в воде и в виде белого осадка легко отделяется от других солей. Как и кислота, хлораты — довольно сильные окислители:

КСlO3 + 6 НСl = КСl + 3 Сl2 + 3 Н2О

Хлораты применяются для производства взрывчатых веществ, а также получения кислорода в лабораторных условиях и солей хлорной кислоты- п е р х л о р а т о в. При нагревании бертолетовой соли в присутствии диоксида марганца МпО2, играющего роль катализатора, выделяется кислород. Если же нагревать хлорат калия без катализатора, то он разлагается с образованием калиевых солей хлороводородной и хлорной кислот:

2 КСlО3 = 2 КСl + 3 O2

4 КСlO3 = КСl + 3 КСlO4

При обработке перхлоратов концентрированной серной кислотой можно получить хлорную кислоту:

КСlO4 + Н2SO4 = КНSO4 + НСlO4

Это самая сильная кислота. Она наиболее устойчива из всех кислород содержащих кислот хлора, однако безводная кислота при нагревании, встряхивании или контакте с восстановителями может разлагаться со взрывом. Разбавленные растворы хлорной кислоты вполне устойчивы и безопасны в работе. Хлораты калия, рубидия, цезия, аммония и большинства органических оснований плохо растворяются в воде.

Галогены (от греч. halos - соль и genes - образующий) - элементы главной подгруппы VII группы периодической системы: фтор, хлор, бром, йод, астат.

1) Общая электронная конфигурация внешнего энергетического уровня - nS2nP5.

2) С возрастанием порядкового номера элементов увеличиваются радиусы атомов, уменьшается электроотрицательность, ослабевают неметаллические свойства (увеличиваются металлические свойства); галогены - сильные окислители, окислительная способность элементов уменьшается с увеличением атомной массы.

3) Молекулы галогенов состоят из двух атомов.

4) С увеличением атомной массы окраска становится более темной, возрастают температуры плавления и кипения, а также плотность.

5) Сила галогеноводородных кислот возрастает с увеличением атомной массы.

  1. Галогены могут образовывать соединения друг с другом (например, BrCl)

20) В подгруппу углерода входят углерод, кремний, германий, олово и свинец. Это р-элементы IV группы периодической системы Д.И. Менделеева. Их атомы на внешнем уровне содержат по четыре электрона ns2np2, чем объясняется сходство их химических свойств.

Электронное строение внешних уровней атомов первых двух элементов подгруппы можно представить так

В невозбужденном состоянии их атомы имеют по 2 неспаренных электрона. Поскольку атомы всей подгруппы имеют на внешнем уровне свободные орбитали, то при переходе в возбужденное состояние распаривают электроны s-подуровней (показано пунктирными стрелками).

В соединениях элементы подгруппы углерода проявляют степень окисления +4 и -4, а также +2, причем последняя с увеличением заряда ядра становится более характерной. Для углерода, кремния и германия наиболее типична степень окисления +4, для свинца +2. Степень окисления -4 в последовательности C – Pb становится все менее характерной.

Элементы подгруппы углерода образуют оксиды общей формулы RO2 и RO, а водородные соединения - формулы RН4. Гидраты высших оксидов углерода и кремния обладают кислотными свойствами, гидраты остальных элементов амфотерны, причем кислотные свойства сильнее выражены у гидратов германия, а основные - у гидратов свинца. От углерода к свинцу уменьшается прочность водородных соединений RН4: СН4 - прочное вещество, а PbH4 в свободном виде не выделено. В подгруппе с ростом порядкового номера уменьшается энергия ионизации атома и увеличивается атомный радиус, т. е. неметаллические свойства ослабевают, а металлические усиливаются.

21) Углерод (химический символ C) химический элемент 4-ой группы главной подгруппы 2-го периода периодической системы Менделеева, порядковый номер 6, атомная масса природной смеси изотопов 12,0107 г/моль.

Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.

Структура аллотропных форм углерода: алмаза, графита и карбина.

Алмаз - Каждый атом углерода в структуре алмаза расположен в центре тетраэдра, вершинами которого служат четыре ближайших атома. Соседние атомы связаны между собой ковалентными связями (sp3-гибридизация). Такая структура определяет свойства алмаза как самого твердого вещества, известного на Земле.

Графит находит широкое применение в самых разнообразных сферах человеческой деятельности, от изготовления карандашных грифелей до блоков замедления нейтронов в ядерных реакторах. Атомы углерода в кристаллической структуре графита связаны между собой прочными ковалентными связями (sp2- гибридизация ) и формируют шестиугольные кольца, образующие, в свою очередь, прочную и стабильную сетку, похожую на пчелиные соты. Сетки располагаются друг над другом слоями. Расстояние между атомами, расположенными в вершинах правильных шестиугольников, равно 0,142 нм., между слоями – 0,335 нм. Слои слабо связаны между собой. Такая структура - прочные слои углерода, слабо связанные между собой, определяет специфические свойства графита: низкую твёрдость и способность легко расслаиваться на мельчайшие чешуйки.

Карбин конденсируется в виде белого углеродного осадка на поверхности при облучении пирографита лазерным пучком света. Кристаллическая форма карбина состоит из параллельно ориентированных цепочек углеродных атомов с sp-гибридизацией валентных электронов в виде прямолинейных макромолекул полиинового ( -С= С-С= С-... ) или кумуленового (=С=С=С=...) типов.

Известны и другие формы углерода, такие как аморфный углерод, белый углерод (чаоит) и т.д. Но все эти формы являются композитами, то есть смесью малых фрагментов графита и алмаза.

Химические свойства углерода . Графит — типичный восстановитель . При нагревании с избытком воздуха графит (именно этот аллотроп наиболее доступен) образует диоксиды:

С + О2 = СО2,

при недостатке кислорода можно получить монооксиды CO

2С + О2 = 2СО,

которые образуются также при нагревании простых веществ с их диоксидами:

С + СО2 = 2СО,

Уже при обычной температуре углерод реагирует со фтором, образуя тетрафториды СF4, при нагревании — с хлором, давая СCl4. При более сильном нагревании углерод реагирует с серой и азотом:

4С + S8 = 4СS2,

2С + N2 = С2N2,

При взаимодействии с кремнием образует карборунд — вещество, по твердости близкое к алмазу:

Si + С = SiC.

Обычные кислоты на углерод не действуют, тогда как концентрированные Н24 и НNО3 окисляют углерод:

С + 2Н24 = СО2↑+ 2SО2↑ + 2Н2О,

3С + 4НNO3 = 3СО2↑ + 4NO↑ +2Н2О.

Графит часто используют для восстановления малоактивных металлов из их оксидов:

СuО + С = Сu + СО↑.

При нагревании же с оксидами активных металлов углерод диспропорционирует, образуя карбиды

СаО + 3С = СаС2 + СО↑,

2Аl2О3 + 9С = Аl4С3 + 6СО↑

Активные металлы — более сильные восстановители, чем углерод, поэтому последние при непосредственном взаимодействии с ними выступают в качестве окислителей

Са + 2С = СаС2.

22) Оксид углерода является продуктом полного сгорания углерода и содержащих его веществ.

В соединениях с кислородом углерод, в зависимости от условий, проявляет валентности +2 и +4.

При температуре обычного пламени при горении углеродосодержащих веществ (дрова, уголь, природный газ метан, спирт и др.) протекает реакция:

С + О2 = СО2

Если же создать условия для повышения температуры , к примеру, уменьшить теплоотвод (внутри толстого слоя горящего угля, в том числе в доменной печи), то протекают реакции:

С +О2 = 2СО

СО2 + С = 2СО

Так же образуется в случаях:

- окисления биохимических процессов, дыхания, гниения,

- сгорания метана

CH4+O2=CO2+2H2O

- взаимодействия кислот с карбонатами

CaCO3+2HCI=CaCI2+CO2+H2O

- термического разложения карбонатов и гидрокарбонатов:

CaCO3=CaO+CO2

2NaHCO3=Na2CO3+CO2+H2O

Оксид углерода – тяжелее воздуха, это газ без запаха, цвета и вкуса.

1.При растворении взаимодействует с водой, образуя уксусную кислоту:

СО22О=Н2СО3

2.Реагирует с основными оксидами:

CO2+CaO=CaCO3

3. Реагирует с основаниями:

CO2+Ca(OH)2=CaCO3+H2O

4.2.Угольная кислота.

Слабая двухосновная кислота, которая образуется при растворении оксида углерода СО2 в воде.

Угольная кислота дает два ряда солей:

- водорастворимые гидрокарбонаты (NaHCO 3 – питьевая сода,

Na 2 CO 3 – сода,

K 2 CO3 – поташ),

- нерастворимые (MgCO 3 , CaCO 3 ).

Реакции образования гидрокарбонатов и карбонатов:

CO2+NaOH=NaHCO3

CO2+2NaOH=Na2CO3+H2O

Соли угольной кислоты подвергаются гидролизу.

Угольная кислота вытесняется из солей более сильными кислотами:

CaCO3+2HCI=CaCI2+CO2+H2O

23) В подгруппу кислорода входит пять элементов: кислород, сера, селен, теллур и полоний (радиоактивный металл). Это р-элементы VI группы периодической системы Д.И.Менделеева. Они имеют групповое название – халькогены, что означает «образующие руды».

У атомов халькогенов одинаковое строение внешнего энергетического уровня — ns24. Этим объясняется сходство их химических свойств. Все халькогены в соединениях с водородом и металлами проявляют степень окисления -2, а в соединениях с кислородом и другими активными неметаллами — обычно +4 и +6. Для кислорода, как и для фтора, не типична степень окисления, равная номеру группы. Он проявляет степень окисления обычно -2 и в соединении со фтором +2. Такие значения степеней окисления следуют из электронного строения халькогенов

У атома кислорода на 2р-подуровне два неспаренных электрона. Его электроны не могут разъединяться, поскольку отсутствует d-подуровень на внешнем (втором) уровне, т. е. отсутствуют свободные орбитали. Поэтому валентность кислорода всегда равна двум, а степень окисления -2 и +2 (например, в Н2О и ОF2). Таковы же валентность и степени окисления у атома серы в невозбужденном состоянии. При переходе в возбужденное состояние (что имеет место при подводе энергии, например при нагревании) у атома серы сначала разъединяются Зр-, а затем 3s-электроны (показано стрелками). Число неспаренных электронов, а, следовательно, и валентность в первом случае равны четырем (например, в SO2), а во втором — шести (например, в SO3). Очевидно, четные валентности 2, 4, 6 свойственны аналогам серы — селену, теллуру и полонию, а их степени окисления могут быть равны -2, +2, +4 и +6.

Водородные соединения элементов подгруппы кислорода отвечают формуле Н2R (R - символ элемента): Н2О, Н2S, Н2Sе, Н2Те. Они называются хальководородами. При растворении их в воде образуются кислоты. Сила этих кислот возрастает с ростом порядкового номера элемента, что объясняется уменьшением энергии связи в ряду соединений Н2R. Вода, диссоциирующая на ионы Н+ и ОН-, является амфотерным электролитом.

Сера, селен и теллур образуют одинаковые формы соединений с кислородом типа RО2 и RО3-. Им соответствуют кислоты типа Н23 и Н24-. С ростом порядкового номера элемента сила этих кислот убывает. Все они проявляют окислительные свойства, а кислоты типа Н2RО3 также и восстановительные.

Закономерно изменяются свойства простых веществ: с увеличением заряда ядра ослабевают неметаллические и возрастают металлические свойства. Так, кислород и теллур — неметаллы, но последний обладает металлическим блеском и проводит электричество.

При нормальных условиях кислород это газ без цвета, вкуса и запаха. 1л его весит 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100г при 0 °C, 2,09 мл/100г при 50 °C) и спирте (2,78 мл/100г при 25 °C). Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при 961 °C). Является парамагнетиком.

Кислород может существовать в виде двух аллотропных видоизменений: кислород О2 и озон О3.

При сравнении физических свойств кислорода и озона целесообразно вспомнить, что это газообразные вещества, различающиеся по плотности (озон в 1,5 раза тяжелее кислорода), температурам плавления и кипения. Озон лучше растворяется в воде.

Кислород в нормальных условиях — газ, без цвета и запаха, озон — газ голубого цвета с характерным резким, но приятным запахом.

Есть отличия и в химических свойствах.

Озон химически активнее кислорода. Активность озона объясняется тем, что при его разложении образуется молекула кислорода и атомарный кислород, который активно реагирует с другими веществами. Например, озон легко реагирует с серебром, тогда как кислород не соединяется с ним даже при нагревании

Но в то же время и озон и кислород реагируют с активными металлами, например с калием К.

Химические свойства

Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

Окисляет большинство органических соединений:

При определенных условиях можно провести мягкое окисление органического соединения:

Кислород не окисляет Au и Pt, галогены и инертные газы.

Кислород образует пероксиды со степенью окисления −1.

Например, пероксиды получаются при сгорании щелочных металлов в кислороде:

Некоторые оксиды поглощают кислород:

По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется перекись водорода:

Надпероксиды имеют степень окисления −1/2, то есть один электрон на два атома кислорода (ион O2 −). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:

Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:

Озониды содержат ион O3 − со степенью окисления −1/3. Получают действием озона на гидроксиды щелочных металлов:

Ион диоксигенил O2+ имеет степень окисления +1/2. Получают по реакции:

Пропуская тлеющий разряд через смесь фтора с кислородом при определенных давлении и температуре получаются смеси высших фторидов кислорода O3F2, О4F2, О5F2 и О6F2.

Кислород поддерживает процессы дыхания, горения, гниения.

Применение

Широкое промышленное применение кислорода началось в середине XX века, после изобретения турбодетандеров — устройств для сжижения и разделения жидкого воздуха.

В металлургии

Конвертерный способ производства стали или переработки штейнов связан с применением кислорода. Во многих металлургических агрегатах для более эффективного сжигания топлива вместо воздуха в горелках используют кислородно-воздушную смесь.

Сварка и резка металлов

Кислород в баллонах широко используется для газопламенной резки и сварки металлов.

Ракетное топливо

В качестве окислителя для ракетного топлива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения. Смесь жидкого кислорода и жидкого озона — один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород — озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода).

В медицине

Кислород используется для обогащения дыхательных газовых смесей при нарушении дыхания, для лечения астмы, декомпрессионной болезни, профилактики гипоксии в виде кислородных коктейлей, кислородных подушек.

В пищевой промышленности

в пищевой промышленности кислород зарегистрирован в качестве пищевой добавки E948[5], как пропеллент и упаковочный газ.

Биологическая роль кислорода

Аварийный запас кислорода в бомбоубежище

Большинство живых существ (аэробы) дышат кислородом воздуха. Широко используется кислород в медицине. При сердечно-сосудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене и других серьёзных заболеваниях. Для обеззараживания и дезодорации воздуха и очистки питьевой воды применяют искусственное обогащение озоном. Радиоактивный изотоп кислорода 15O применяется для исследований скорости кровотока, лёгочной вентиляции.

24) Се́ра — элемент шестой группы третьего периода главной подгруппы периодической системы химических элементов Д. И. Менделеева, с атомным номером 16. Проявляет неметаллические свойства. Обозначается символом S. В водородных и кислородных соединениях находится в составе различных ионов, образует многие кислоты и соли. Многие серосодержащие соли малорастворимы в воде.

Химические свойства

1) Сера реагирует со щелочными металлами без нагревания:

2Na + S → Na2S

c остальными металлами (кроме Au, Pt) - при повышенной t°:

2Al + 3S –t°→ Al2S3

Zn + S –t°→ ZnS

2) С некоторыми неметаллами сера образует бинарные соединения:

H2 + S → H2S

2P + 3S → P2S3

C + 2S → CS2

Восстановительные свойства сера проявляет в реакциях с сильными окислителями:

3) c кислородом:

S + O2 →SO2

2S + 3O2 → 2SO3

4) c галогенами (кроме йода):

S + Cl2 → SCl2

5) c кислотами - окислителями:

S + 2H2SO4(конц) → 3SO2 + 2H2O

S + 6HNO3(конц) → H2SO4 + 6NO2 + 2H2O

Реакции диспропорционирования:

6) 3S + 6KOH → K2SO3 + 2K2S + 3H2O

7) сера растворяется в концентрированном растворе сульфита натрия:

S+ Na2SO3 → Na2S2O3 тиосульфат натрия

СЕРОВОДОРОД

Физические свойства

Газ, бесцветный, с запахом тухлых яиц, ядовит, растворим в воде; t°пл. = -86°C; t°кип. = -60°С.

Получение

1) H2 + S → H2S

2) FeS + 2HCl → FeCl2 + H2S

Химические свойства

1) Раствор H2S в воде – слабая двухосновная кислота:

H2S « H+ + HS- « 2H+ + S2-

K1 = ([H+] • [HS-]) / [H2S] = 1 • 10-7

K2 = ([H+] • [S2-]) / [HS-] = 1,3 • 10-14

Сероводородная кислота образует два ряда солей - средние (сульфиды) и кислые (гидросульфиды).

2) Взаимодействует с основаниями:

H2S + 2NaOH → Na2S + 2H2O

3) H2S проявляет очень сильные восстановительные свойства:

H2S + Br2 → S+ 2HBr

H2S + 2FeCl3 → 2FeCl2 + S + 2HCl

H2S + 4Cl2 + 4H2O → H2SO4 + 8HCl

3H2S + 8HNO3(конц) → 3H2S+6O4 + 8NO + 4H2O

H2S + H2SO4(конц) → S + SO2 + 2H2O

4) Сероводород окисляется:

при недостатке O2

2H2S + O2 → 2S + 2H2O

при избытке O2

2H2S + 3O2 → 2SO2 + 2H2O

5) Серебро при контакте с сероводородом чернеет:

4Ag + 2H2S + O2 → 2Ag2S + 2H2O

6) Качественная реакция на сероводород и растворимые сульфиды - образование темно-коричневого (почти черного) осадка PbS:

H2S + Pb(NO3)2 → PbS + 2HNO3

Na2S + Pb(NO3)2 → PbS¯+ 2NaNO3

Одной из основных причин потемнения художественных картин старых мастеров было использование свинцовых белил, которые за несколько веков, взаимодействуя со следами сероводорода в воздухе (образуются в небольших количествах при гниении белков; в атмосфере промышленных регионов и др.) превращаются в PbS.

7) Реставрация:

PbS + 4H2O2 → PbSO4(белый) + 4H2O

ОКСИДЫ СЕРЫ

Оксид серы IV

SO2 (сернистый ангидрид; сернистый газ)

Физические свойства

Бесцветный газ с резким запахом; хорошо растворим в воде; t°пл. = -75,5°C; t°кип. = -10°С.

Обесцвечивает многие красители, убивает микроорганизмы.

Получение

1) При сжигании серы в кислороде:

S + O2 → SO2

2) Окислением сульфидов:

4FeS2 + 11O2 → 2Fe2O3 + 8SO2

3) Обработкой солей сернистой кислоты минеральными кислотами:

Na2SO3 + 2HCl → 2NaCl + SO2 + H2O

4) При окислении металлов концентрированной серной кислотой:

Cu + 2H2SO4(конц) → CuSO4 + SO2 + 2H2O

Химические свойства

1) Сернистый ангидрид - кислотный оксид. При растворении в воде образуется слабая и неустойчивая сернистая кислота H2SO3 (существует только в водном растворе)

H2SO3 образует два ряда солей - средние (сульфиты) и кислые (бисульфиты, гидросульфиты).

Ba(OH)2 + SO2 → BaSO3 (сульфит бария) + H2O

Ba(OH)2 + 2SO2 → Ba(HSO3)2(гидросульфит бария)

2) Реакции окисления (S+4 – 2ē → S+6)

SO2 + Br2 + 2H2O → H2SO4 + 2HBr

5SO2 + 2KMnO4 + 2H2O → K2SO4 + 2MnSO4 + 2H2SO4

Водные растворы сульфитов щелочных металлов окисляются на воздухе:

2Na2SO3 + O2 → 2Na2SO4

3) Реакции восстановления (S+4 + 4ē → S0)

SO2 + С → S + СO2

SO2 + 2H2S → 3S + 2H2O

Оксид серы VI

SO3 (серный ангидрид)

Физические свойства

Бесцветная летучая жидкость, t°пл. = 17°C; t°кип. = 66°С; на воздухе "дымит", сильно поглощает влагу (хранят в запаянных сосудах).

SO3 + H2O → H2SO4

Твердый SO3 существует в трех модификациях. SO3 хорошо растворяется в 100%-ной серной кислоте, этот раствор называется олеумом.

Получение

1) 2SO2 + O2 →2SO3

2) Fe2(SO4)3 → Fe2O3 + 3SO3

Химические свойства

1) Серный ангидрид - кислотный оксид. При растворении в воде дает сильную двухосновную серную кислоту:

SO3 + H2O → H2SO4

H2SO4 образует два ряда солей - средние (сульфаты) и кислые (гидросульфаты):

2NaOH + SO3 → Na2SO4 + H2O

NaOH + SO3 → NaHSO4

2) SO3 - сильный окислитель.