Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Генетика Конспект лекций.doc
Скачиваний:
396
Добавлен:
28.09.2018
Размер:
4.01 Mб
Скачать

7. Биохимический метод

Причиной многих врожденных нарушений метаболизма являются различные дефекты ферментов, возникающие вследствие изменяющих их структуру мутаций.Биохимические показателиболее точно отражают сущность болезни по сравнению с показателями клиническими, поэтому их значениев диагностике наследственных болезнейпостоянно возрастает.Использование современных биохимических методов позволяют определять любые метаболиты, специфические для конкретной наследственной болезни.

Предметом современной биохимической диагностики являются специфические метаболиты, энзимопатии, различные белки. Объектами биохимического анализа могут служить моча, пот, плазма и сыворотка крови.

Для биохимической диагностики используются как простые качественные реакции, так и более точные методы. Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать нарушение обмена аминокислот, олигосахаридов, мукополисахаридов. Газовая хроматография применяется для выявления нарушений обмена органических кислот.

Биохимические методы применяются и для диагностики гетерозиготных состояний у взрослых. Известно, что среди здоровых людей всегда имеется большое число носителей патологического гена. Хотя такие люди внешне здоровы, вероятность появления заболевания у их ребенка всегда существует. В связи с этим, выявление гетерозиготного носительства – важная задача медицинской генетики.

Если в брак вступают гетерозиготные носители какого-либо заболевания, то риск рождения больного ребенка в такой семье составит 25%.Шансы на встречу двух носителей одинакового патологического гена выше, если в брак вступают родственники, т.е. они могут унаследовать один и тот же рецессивный ген от своего общего предка.

Выявление гетерозиготных носителей того или иного заболевания возможно путем использования биохимических тестов, микроскопического исследования клеток крови и тканей, определения; активности фермента, измененного в результате мутации.

Известно, что заболевания, в основе которых лежит нарушение обмена веществ, составляют значительную часть наследственной патологии. Так, гетерозиготные носители фенилкетонурин реагируют на введение фенилаланина более сильным повышением содержания аминокислоты в плазме, чем нормальные гомозиготы.

Биохимический метод широко применяется в медико-генетическом консультировании для определения риска рождения больного ребенка.Успехи в области биохимической генетики способствуют более широкому внедрению диагностики гетерозиготного носительства в практику. Еще недавно можно было диагностировать не более 10-15 гетерозиготных состояний, в настоящее время – более200. Однако следует отметить, что до сих пор имеется немало наследственных заболеваний, для которых методы гетерозиготной диагностики еще не разработаны.

8. Молекулярно-генетический метод

Молекулярно-генетический метод – выявление изменений в определенных участках ДНК, гена или хромосомы.В его основе лежат современные методики работы с ДНК или РНК, В 70-80 гг. в связи с прогрессом в молекулярной генетике и успехами в изучении генома человека молекулярно- генетический подход нашел широкое применение,

Начальным этапом молекулярно-генетического анализа является получение образцов ДНК или РНК. Для этого используют геномную ДНК (вся ДНК клетки) или отдельные ее фрагменты. В последнем ее случае, чтобы получить достаточное количество таких фрагментов,необходимо, амплифицировать (размножить) их.Для этого пользуются полимеразной цепной реакцией – быстрым методом ферментативной репликации определенного фрагмента ДНК. С его помощью можно амплифицировать любой участок ДНК, расположенный между двумя известными последовательностями.

Анализировать огромные молекулы ДНК в том виде, в котором они существуют в клетке, невозможно. Поэтому прежде их необходимо разделить на части, обработать разнообразными рестриктазами – бактериальными эндонуклеазами.Эти ферменты способны разрезать двойную спираль ДНК, причем места разреза строго специфичны для данного образца. Расщепление ДНК рестриктазами дает характерный набор фрагментов (4-6 пар оснований), отличающихся по длинне.

Фракционирование фрагментов ДНК по размеру и длине проводится с помощью электрофореза на поверхности агарозного или акриламидного геля. Под действием электрического поля фрагменты ДНК начинают перемещаться вниз по гелю со скоростью, зависящей от их длины. В результате каждый фрагмент ДНК занимает определенное положение в виде дискретной полосы в конкретном месте геля. Длину каждого фрагмента можно определить путем сравнения расстояния, пройденного им и стандартным отрезком ДНК.

Молекулярно-генетическую диагностику наследственных болезней используют и для изучения генома человека.Чтобы выявить необходимые для этого специфические фрагменты ДНК, используют блот-гибридизацию по Саузерну. Сущность этой методики состоит в следующем: сначала осуществляют денатурацию ДНК с образованием одно-цепочечных фрагментов, которые переносят на нитроцеллюлозный или нейлоновый фильтр в буферном растворе.

Агарозный гель с фрагментами ДНК помещают на фильтровальную бумагу, смоченную концентрированным соленым раствором. На гель накладывают нитроцеллюлозный фильтр, а сверху помещают сухую фильтровальную бумагу, в которую впитывается соленый раствор. ДНК переносится вместе с раствором, но задерживается фильтром и практически полностью оказывается на его поверхности. Затем одно-цепочечные ДНК фиксируют на фильтре. Расположение фрагментов на фильтре точно соответствует их расположению в геле

Чтобы выявить нужные фрагменты проводят гибридизацию ДНК с реактивным ДНК-зондом или клонируемым фрагментом ДНК. Нуклеотидная последовательность зонда должна быть полностью или частично комплементарна изучаемому участку геномной ДНК.

Результат гибридизации комплиментарных цепей радиоактивного ДНК-зонда и фрагмента ДНК обнаруживают с помощью радиоавтографии: каждая комплиментарная зонду последовательность ДНК проявляется в виде радиоактивной полосы.

С помощью метода Саузерна можно составить рестрикционную карту генома в участке исследуемого генома и установить, несет ли данный ген какие-либо дефекты. Так, разработаны эффективные методы синтеза искусственных ДНК-зондов, которые используются в ренатальной диагностике наследственных заболеваний. Для этого из эмбриональных клеток, содержащихся в амниотической жидкости плода, выделяют ДНК и гибридизируют ее с помощью Саузерн-блотинга с радиоактивным ДНК-зондом. Аномальный эмбрион легко распознается, т.к. его ДНК будет гибридизоваться только с ДНК-зондом, комплементарным мутантной последовательности

В настоящее время имеются различные методы выявления мутаций. Их делят на прямые и косвенные. Прямая диагностика мутаций включает ряд методов:

  1. Определение нуклеотидной последовательности, дающее возможность выявить замены оснований, делеции и вставки в изучаемом фрагменте.

  2. выявление нарушения места рестрикции, с помощью блот - гибридизации по Саузерну. Около 50% нуклеотидных замен ведет к изменению места рестрикции. Это делает возможным выявить мутацию путем рестриктного анализа.

  3. Проведение аллелоспецифической гибридизации с синтетическими зондами, что позволяет обнаружить мутации в геномной ДНК. Последовательность оснований в зонде может быть задача по дефектному или нормальному варианта гена. В обоих случаях зонд используется для гибридизации с фрагментами ДНК обследуемого индивида.

  4. Химическое и ферментативное расщепление ДНК в местах неправильной сшивки оснований выявляет большую группу мутаций, ведущих к нестабильности ДНК. Метод заключается в электрофорезе двух цепочечной ДНК в нейтральном или равномерно денатурирующем гене.

  5. Регистрация изменения электрофоретической молекулы ДНК.

  6. Трансляция белкового продукта осуществляется в системе in vitro на основе получения специфической мРНК с добавлением лизата ретикулоцитов. Синтезируемый белок анализируют с помощью электрофореза. Изменение подвижности белка указывает на наличие мутации.

К косвенному выявлению мутаций прибегают в тех случаях, когда нуклеотидная последовательность гена еще не расшифрована, но известно ее положение на генетической карте. Технические приемы такие же, как и в прямой диагностике, но добавляется математический анализ.