Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции-7 семестр 2012-2013.doc
Скачиваний:
41
Добавлен:
25.03.2016
Размер:
850.43 Кб
Скачать

4.5. Типы спектров различных элементов.

С положением различных элементов в периодической системе связаны особенности их оптических спектров.

По своему характеру оптические спектры различных элементов, обусловленные внешними электронами, можно разделить на следующие типы:

1) Одноэлектронные спектры элементов с внешней s-оболочкой.

В нормальном состоянии имеется один внешний s-электрон, переход которого на более высокие уровни приводит к возникновению спектра с хорошо вырожденными спектральными сериями. Такие спектры имеют щелочные металлы и водород.

2) Двухэлектронные спектры элементов с внешней s-оболочкой.

В нормальном состоянии имеются 2 внешних s-электрона, заполняющих соответствую оболочку. Эти электроны легко возбуждаются, при возбуждении одного из них возникает спектр также с хорошо вырожденными сериями, но более сложный, чем в случае атомов с одним внешним электроном.

Такие спектры имеют Be, Mg, Ca, Sr, Ba и Ra, у которых оболочка следует за заполненной оболочкой; и Zn, Cd, Hg, у которых эта оболочка следует за; и He с, занимающий особое место, т.к. его спектр трудновозбудим (инертный газ).

3) Спектры элементов с заполняющимися p-оболочками.

Характерные черты этих спектров определяются наличием внешних электронов и существенной ролью конфигураций, содержащих два и более эквивалентных p-электронов (см.п.4.1).

Сложные спектры этого типа имеют элементы от B до F во II периоде, от Al до Cl в III периоде, от Ga до Br в IV периоде, от In до J в V периоде, от Tl до At в VI периоде.

При этом для спектров элементов с одним и с двумя p-электронами в нормальной конфигурации (B, Al, Sc, Y, Tl и C, Si, Ge, Sn, Pb) характерна существенная роль s-электронов оболочки .

4) Спектры элементов с заполненными p-оболочками.

В нормальном состоянии полностью заполнена оболочка . При возбуждении возникает конфигурация, состоящая из остоваи одного возбужденного внешнего электрона. Спектры такого типа имеют инертные газы Ne, Ar, Kr, Xe, Rn.

5) Спектры элементов с достраивающимися d-оболочками.

Характерные черты спектров элементов, у которых происходит достройка внутренней d-оболочки, определяется наличием эквивалентных электронов (n-1)d и их конкуренцией с электронами ns. Спектры этого типа (более сложные, чем предыдущие) имеют элементы от Sc до Ni в IV периоде (достройка оболочки d), от Y до Pd в V периоде (достройка 4d) и от Lu до Pt в VI периоде (5d-достройка).

6) Спектры элементов с достраивающимися f-оболочками.

Характерные черты спектров элементов, у которых происходит достройка внутренней f-оболочки, определяется наличием эквивалентных электронов

(n-2)f и их конкуренций как с электронами (n-1)d, так и с электронами ns.

Спектры этого типа (особенно сложные) имеют элементы от La до Y в VI периоде (достройка 4f) и от Ac в VII периоде (достройка 5f).

Тема 5. Основы общей систематики сложных спектров.

5.1. Сложение орбитальных и спиновых моментов и типы связи.

Для произвольной электронной конфигурации с незаполненной внешней оболочкой полный механический момент не обязан равняться нулю, как для частного случая заполненных оболочек, для которых J=0.

Существенно, что для определения возможных уровней нужно учитывать лишь электроны, находящиеся вне заполненных оболочек. Орбитальные и спиновые моменты электронов, образующих заполненные оболочки, компенсируют друг друга, и нужно складывать лишь моменты k электронов, не входящих в заполненные оболочки:

Если бы электроны между собой не взаимодействовали, и отсутствовало также взаимодействие спина любого электрона с орбитальным моментом этого же электрона, то данной электронной конфигурации соответствовал бы один уровень энергии. Из-за взаимодействия электронов заданной конфигурации целая совокупность уровней. При систематике сложных спектров необходимо знать, какая именно совокупность уровней соответствует данной конфигурации, т.е. - сколько будет уровней, - какими квантовыми числами они будут характеризоваться и - как будут расположены.

Для определения числа уровней и их квантовых чисел можно воспользоваться квантовым законом сложения моментов. Сложение можно производить в различном порядке.

В зависимости от выбранного порядка сложения получаем различные типы связи.

1. Самый важный случай сочетания моментов - случай нормальной связи или связи Расселя-Саундерса.

!!! При нормальной связи орбитальные моменты электронов складываются в полный орбитальный момент атома L, спиновые моменты электронов - в полный спиновый момент атома S, а затем L и S складываются в полный момент атома J. т.е.

; L+S=J (5.1)

Нормальную связь обозначают (L,S).

Нормальная связь имеет место, когда электростатическое взаимодействие электроно между собой - их отталкивание по закону Кулона - велико по сравнению со спин-орбитальным взаимодействием - магнитным взаимодействием спиновых и орбитальных моментов. Энергия зависит прежде всего от S и L.

2. Противоположный тип связи - (j, j).

!!! Сначала для любого электрона складываются его орбитальный и спиновый моменты ив полный момент данного электрона, а затем полные моменты отдельных электронов складываются в полный момент атомаJ, т.е.

, (5.2)

Связь (j, j) получается, когда спин-орбитальное взаимодействие велико по сравнению с электростатическим взаимодействием различных электронов. Энергия, в первую очередь зависит от , а затем уже от значений J при заданных.

Какой тип связи осуществиться зависит от относительных величин различных взаимодействий. Наряду с типами связи (J, S) и (j, j) могут осуществляться, если имеются 3 и более электронов, более сложные, промежуточные типы связи. И иногда оказывается невозможным характеризовать отдельные уровни другими квантовыми числами, помимо J, определяющего полный момент атома.