Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диплом ФИНАЛЬНЫЙ.docx
Скачиваний:
107
Добавлен:
23.03.2016
Размер:
249.77 Кб
Скачать

1.2.2 Спектрометрические детекторы

PIN-диод — разновидность диода, в котором между областями электронной (n) и дырочной (p) проводимости находится собственный (нелегированный) полупроводник (i-область). p- и n-области, как правило,  легируются сильно, так как они часто используются для омического контакта к металлу.

Диффузионно-дрейфовые n -i- p детекторы (например, Ge(Li)) могут быть изготовлены благодаря уникальному поведению ионов лития в кристаллах. Ионы лития, имея малые размеры, легко диффундируют внутрь кремния и германия, располагаясь не в узлах решётки, а между узлами. Коэффициент их диффузии в германий, например, в 107раз больше, чем у обычных доноров. Для того чтобы внедрить в структуру кристалла, на поверхность p - полупроводника напыляют литий, который при нагревании до температуры около 400оС диффундирует на глубину примерно 0,1 мм, образуя тонкий высоколегированный n+- слой.

Затем к этому p –n - переходу прикладывается напряжение (плюс к n - слою), под действием которого происходит управляемая диффузия ионов лития в p - полупроводник до тех пор, пока количество ионов лития не станет точно равным количеству акцепторных атомов (это обычно бор). Противоположная поверхность легируется атомами бора с энергией ∼10 кэВ, в результате чего образуется тонкий p +- слой с высокой проводимостью. Поверхностные p+ и n+ слои служат электродами. Между ними располагается чувствительная область полностью скомпенсированного полупроводника, удельное сопротивление которого равно сопротивлению чистого кристалла.

Основные типы диффузионно-дрейфовых детекторов, в зависимости от формы и технологии изготовления, делят на планарные и коаксиальные (с одним и двумя открытыми концами).

1.2.3 Нейтронные детекторы

Нейтрон – электрически нейтральная элементарная частица. В связи с этим их обнаружение является более сложным по сравнению с заряженными частицами, так как их движение не зависит от электрических и магнитных полей. Вместе с протонами являются одной из двух главных компонент атомных ядер. В свободном состоянии они радиоактивны.

Нейтрон является незаряженной частицей и поэтому не создает при своем движении ионизацию окружающей среды. Ионизация среды является вторичным процессом и возникает как результат различных реакций взаимодействия нейтронов с атомами и ядрами элементов среды. Поэтому механизмы регистрации нейтронов в веществе основаны на косвенных методах. Процесс регистрации нейтронов начинается тогда, когда при взаимодействии с ядрами нейтроны инициируют образование одной или нескольких заряженных частиц. Электрические сигналы, образованные этими заряженными частицами, могут затем обрабатываться детектирующей системой. Существуют два основных типа взаимодействия нейтронов с веществом. Во-первых, может иметь место рассеяние нейтрона на ядре с передачей последнему части кинетической энергии нейтрона. Если при этом передается достаточное количество энергии, ядро отдачи ионизирует вещество в месте взаимодействия. Данный механизм эффективен лишь при взаимодействии нейтронов с легкими ядрами. Для практического использования в детекторах, достаточно легкими являются только ядра водорода и гелия. Во-вторых, нейтрон может вызвать ядерную реакцию. Продукты этих реакций, такие как протоны, альфа-частицы, фотоны гамма-излучения и осколки деления, могут регистрироваться детектором. Условием протекания некоторых реакций является наличие минимальной энергии нейтронов (энергетического порога), но большинство реакций могут происходить и на тепловых нейтронах. Детекторы, регистрирующие тепловые нейтроны, как правило, окружены материалом-замедлителем нейтронов, что позволяет добиться максимальной эффективности регистрации. Детекторы, использующие либо механизм отдачи, либо механизм ядерной реакции, могут иметь твердое, жидкое или газообразное наполнение. Хотя выбор реакций ограничен, детектирующая среда может быть достаточно разнообразна, что создает множество вариантов. В настоящем разделе курса наиболее полно описываются детекторы, имеющие наибольшее распространение в практике контроля и анализа ядерных материалов. Возможности спектрального анализа полей нейтронов ограничены. Счетчики на ядрах отдачи регистрируют только первый акт взаимодействия. При этом энергия нейтрона, как правило, полностью не поглощается в детекторе. Единственная информация об энергии, которая может быть получена в такой ситуации, это информация о том, инициировано ли это взаимодействие нейтроном высокой или низкой энергии. В счетчиках на ядерных реакциях используется преимущество более высокой вероятности реакции при низких энергиях нейтронов путем предварительного их замедления. Информация о начальной энергии нейтронов до замедления при этом теряется. Энергия, регистрируемая детектором в этом случае – это энергия реакции (и, возможно, остаточная кинетическая энергия нейтронов). Таким образом, в большинстве случаев нейтронные детекторы позволяют получить информацию только о количестве зарегистрированных нейтронов, но не об их энергии. Данные об энергетическом диапазоне зарегистрированных нейтронов обычно могут быть получены из сведений о типе детектора и окружающих материалах.