Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторный практикум. Часть 1.doc
Скачиваний:
342
Добавлен:
18.03.2016
Размер:
2.2 Mб
Скачать

Законы кеплера и конфигурации планет

Цель работы: изучение закономерностей в движении планет и вычисление их конфигураций.

Пособия: Астрономический календарь – постоянная часть или Справочник любителя астрономии; Астрономический календарь-ежегодник; Малый звездный атлас А.А. Михайлова; калькулятор.

Под действием гравитационного притяжения к Солнцу планеты обращаются вокруг него по слабовытянутым эллиптическим орбитам. Солнце находится в одном из фокусов эллиптической орбиты планеты. Это движение подчиняется законам Кеплера.

Величина большой полуоси эллиптической орбиты планеты является также средним расстоянием от планеты до Солнца. Благодаря незначительным эксцентриситетами небольшим наклоненияморбит больших планет, можно при решении многих задач приближенно полагать эти орбиты круговыми с радиусоми лежащими практически в одной плоскости – в плоскости эклиптики (плоскости земной орбиты).

Согласно третьему закону Кеплера, если и– соответственно звездные (сидерические) периоды обращения некоторой планеты и Земли вокруг Солнца, аи– большие полуоси их орбит, то

.

(7.1)

Здесь периоды обращения планеты и Земли могут быть выражены в любых единицах, но размерности идолжны быть одинаковы. Подобное утверждение справедливо и для больших полуосейи.

Если за единицу измерения времени принять 1 тропический год (– период обращения Земли вокруг Солнца), а за единицу измерения расстояния 1 астрономическую единицу (), то третий закон Кеплера (7.1) можно переписать в виде

.

(7.2)

Угловая и линейная скорости планеты при ее движении на орбите периодически изменяются в соответствии со вторым законом Кеплера. Их средние значения могут быть посчитаны по средней удаленности планеты от Солнца.

Средняя суточная угловая скорость планеты, определяется выражением

,

(7.3)

где – сидерический период обращения планеты вокруг Солнца, выраженный в средних солнечных сутках.

Очевидно, для Земли средняя угловая скорость определяется формулой

(7.4)

и составляет .

Поделив (7.3) на (7.4), получим

.

(7.5)

Если принять за единицу измерения угловых скоростей планеты и Земли , а периоды обращения измерять в тропических годах, то формула (7.5) может быть записана в виде

.

(7.6)

Учтя третий закон Кеплера (7.2), запишем зависимость средней угловой скорости планеты от большой полуоси ее орбиты

.

(7.7)

Средняя линейная скорость движения планеты на орбите может быть рассчитана по формуле

,

(7.8)

Аналогичная величина для Земли

.

(7.9)

Среднее значение орбитальной скорости Земли известно и составляет . Поделив (7.8) на (7.9) и используя третий закон Кеплера (7.2), найдем зависимостьот

,

(7.10)

Звездный (сидерический) и синодическийпериоды обращения планеты связаны между собойуравнением синодического движения

.

(7.11)

Знак «-» соответствует внутренним или нижним планетам (Меркурий, Венера), а «+» – внешним или верхним (Марс, Юпитер, Сатурн, Уран, Нептун). В этой формуле ивыражены в годах. В случае необходимости найденные значенияивсегда могут быть выражены в сутках.

Взаимное расположение планет легко устанавливается по их гелиоцентрическим эклиптическим сферическим координатам, значения которых на различные дни года публикуются в астрономических календарях-ежегодниках, в таблице под названием «гелиоцентрические долготы планет».

Центром этой системы координат (рис. 7.1) является центр Солнца, а основным кругом – эклиптика, полюса которой иотстоят от нее на 90º.

Большие круги, проведенные через полюса эклиптики, называются кругами эклиптической широты, по ним отсчитывается от эклиптики гелиоцентрическая эклиптическая широта , которая считается положительной в северном эклиптическом полушарии и отрицательной в южном эклиптическом полушарии небесной сферы. Гелиоцентрическая эклиптическая долгота отсчитывается по эклиптике от точки весеннего равноденствия  против часовой стрелки до основания круга широты светила и имеет значения в пределах от 0º до 360º.

Из-за малого наклонения орбит больших планет к плоскости эклиптики, эти орбиты всегда находятся вблизи эклиптики, и в первом приближении можно считать их гелиоцентрическую долготу , определяя положение планеты относительно Солнца лишь одной ее гелиоцентрической эклиптической долготой.

Рис. 7.1. Эклиптическая система небесных координат

Рассмотрим орбиты Земли и некоторой внутренней планеты (рис. 7.2), используя гелиоцентрическую эклиптическую систему координат. В ней основным кругом является эклиптика, а нуль-пунктом – точка весеннего равноденствия . Отсчет эклиптической гелиоцентрической долготы планеты ведется от направления «Солнце – точка весеннего равноденствия » до направления «Солнце – планета» против часовой стрелки. Для простоты будем считать плоскости орбит Земли и планеты совпадающими, а сами орбиты – круговыми. Тогда положение планеты на орбите задается ее эклиптической гелиоцентрической долготой .

Если центр эклиптической системы координат совместить с центром Земли, то это будет геоцентрическая эклиптическая система координат. Тогда угол между направлениями «центр Земли – точка весеннего равноденствия » и «центр Земли – планета» называется эклиптической геоцентрической долготой планеты . Гелиоцентрическая эклиптическая долгота Землии геоцентрическая эклиптическая долгота Солнца, как видно из рис. 7.2, связаны соотношением:

.

(7.12)

Будем называть конфигурацией планеты некоторое фиксированное взаимное расположение планеты, Земли и Солнца.

Рассмотрим раздельно конфигурации внутренних и внешних планет.

Рис. 7.2. Гелио- и геоцентрическая системы эклиптических координат

Различают четыре конфигурации внутренних планет: нижнее соединение (н.с.), верхнее соединение (в.с.), наибольшая западная элонгация (н.з.э.) и наибольшая восточная элонгация (н.в.э.).

В нижнем соединении (н.с.) внутренняя планета находится на прямой, соединяющей Солнце и Землю, между Солнцем и Землей (рис. 7.3). Для земного наблюдателя в этот момент внутренняя планета «соединяется» с Солнцем, то есть видна на фоне Солнца. При этом эклиптические геоцентрические долготы Солнца и внутренней планеты равны, то есть: .

Вблизи нижнего соединения планета перемещается на небе в попятном движении около Солнца, над горизонтом находится днем, причем около Солнца, и наблюдать ее, разглядывая что-либо на ее поверхности, невозможно. Очень редко удается увидеть уникальное астрономическое явление – прохождение внутренней планеты (Меркурия или Венеры) по диску Солнца.

Рис. 7.3. Конфигурации внутренних планет

Так как угловая скорость внутренней планеты больше угловой скорости Земли, через некоторое время планета сместится в положение, где направления «планета-Солнце» и «планета-Земля» отличаются на (рис. 7.3). Для земного наблюдателя планета при этом удалена от солнечного диска на максимальный угол, или говорят, что планета в этот момент находится в наибольшей элонгации (удалении от Солнца). Различают две наибольших элонгации внутренней планеты –западную (н.з.э.) и восточную (н.в.э.). В наибольшей западной элонгации () и планета заходит за горизонт и восходит раньше, чем Солнце. Это значит, что наблюдать ее можно утром, перед восходом Солнца, в восточной стороне неба. Это называетсяутренней видимостью планеты.

После прохождения наибольшей западной элонгации диск планеты начинает приближаться на небесной сфере к диску Солнца до тех пор, пока планета не исчезнет за диском Солнца. Эта конфигурация, когда Земля, Солнце и планета лежат на одной прямой, причем планета находится за Солнцем, называется верхним соединением (в.с.) планеты. Проводить в этот момент наблюдения внутренней планеты нельзя.

После верхнего соединения угловое расстояние между планетой и Солнцем начинает расти, достигая максимального значения в наибольшей восточной элонгации (н.в.э.). При этом гелиоцентрическая эклиптическая долгота планеты больше, чем у Солнца (а геоцентрическая – наоборот, меньше, то есть). Планета в этой конфигурации восходит и заходит позднее Солнца, что дает возможность наблюдать ее вечером после захода Солнца (вечерняя видимость).

Из-за эллиптичности орбит планет и Земли угол между направлениями на Солнце и на планету в наибольшей элонгации не постоянен, а изменяется в некоторых пределах, для Меркурия – от до, для Венеры – отдо.

Наибольшие элонгации – самые удобные моменты для наблюдений внутренних планет. Но так как даже в этих конфигурациях Меркурий и Венера не отходят на небесной сфере далеко от Солнца, наблюдать их в течение всей ночи нельзя. Продолжительность вечерней (и утренней) видимости у Венеры не превышает 4 часов, а у Меркурия – не более 1.5 часа. Можно сказать, что Меркурий всегда «купается» в солнечных лучах – его приходится наблюдать или непосредственно перед восходом Солнца, или сразу после захода, на светлом небе. Видимый блеск (звездная величина) Меркурия меняется со временем в пределах от до. Видимая звездная величина Венеры варьируется отдо. Венера – самый яркий объект на небе после Солнца и Луны.

У внешних планет также различают четыре конфигурации (рис. 7.4): соединение (с.), противостояние (п.), восточная и западная квадратуры (з.кв. и в.кв.).

Рис. 7.4. Конфигурации внешних планет

В конфигурации «соединение» внешняя планета расположена на прямой, соединяющей Солнце и Землю, за Солнцем. В этот момент наблюдать ее нельзя.

Так как угловая скорость внешней планеты меньше, чем у Земли, дальнейшее относительное движение планеты на небесной сфере будет попятным. При этом она постепенно будет смещаться к западу от Солнца. Когда угловое удаление внешней планеты от Солнца достигнет , она попадет в конфигурацию «западная квадратура». При этом планета будет видна в восточной стороне неба всю вторую половину ночи до восхода.

В конфигурации «противостояние», называемой иногда также «оппозиция», планета отстоит на небе от Солнца на , тогда

,

(7.13)

.

(7.14)

После противостояния внешняя планета постепенно приближается к Солнцу, находясь на небе восточнее, то есть, левее нашего дневного светила. В этот период планету можно наблюдать вечером после захода Солнца. Когда угловое удаление Солнца достигнет , наступит конфигурация «восточная квадратура», при этом геоцентрическая эклиптическая долгота планеты

.

(7.15)

Планету, находящуюся в восточной квадратуре, можно наблюдать с вечера до полуночи.

Наиболее благоприятны условия для наблюдений внешних планет в эпоху их противостояния. В это время планета доступна наблюдениям в течение всей ночи. При этом она максимально сближена с Землей и имеет наибольший угловой диаметр и максимальный блеск. Для наблюдателей немаловажно, что все верхние планеты достигают наибольшей высоты над горизонтом в зимние противостояния, когда они движутся по небу в тех же созвездиях, где Солнце бывает летом. Летние же противостояния на северных широтах происходят низко над горизонтом, что может весьма затруднить наблюдения.

При расчете даты той или иной конфигурации планеты ее расположение относительно Солнца изображается на чертеже, плоскость которого принимается за плоскость эклиптики. Направление на точку весеннего равноденствия  выбирается произвольно. Если задан день года, в который гелиоцентрическая эклиптическая долгота Земли имеет определенное значение, то сначала следует отметить на чертеже расположение Земли.

Приближенное значение гелиоцентрической эклиптической долготы Земли очень легко найти по дате наблюдения. Легко видеть (рис. 7.5), что, например, 21 марта, смотря с Земли в сторону Солнца, мы смотрим в точку весеннего равноденствия , то есть, направление «Солнце – точка весеннего равноденствия» отличается от направления «Солнце – Земля» на , а это значит, что гелиоцентрическая эклиптическая долгота Земли. Смотря на Солнце в день осеннего равноденствия (23 сентября), мы видим его в направлении на точку осеннего равноденствия (на чертеже она диаметрально противоположна точке). При этом эклиптическая долгота Земли . Из рис. 7.5 видно, что в день зимнего солнцестояния (22 декабря) эклиптическая долгота Земли, а в день летнего солнцестояния (22 июня) –.

Рис. 7.5. Эклиптические гелиоцентрические долготы Земли в разные дни года

Для расчета долготы Земли в произвольный день года достаточно вспомнить, что полный оборот ввокруг Солнца Земля совершает за 365 дней. Это значит, что за сутки Земля смещается по своей орбите примерно на. Например, 1 апреля эклиптическая гелиоцентрическая долгота Земли будет, так как эта дата наступает через 10 дней после дня весеннего равноденствия, когда.

Гелиоцентрическая эклиптическая долгота Земли в определенные дни года может быть также найдена по геоцентрической эклиптической долготе Солнцав эти же дни, так как если построить подобную систему эклиптических координат с началом в центре Земли, то всегда, поскольку Солнце и Земля всегда находятся на противоположных концах одного радиуса-вектора. Но геоцентрическая долготапланеты не связана подобной зависимостью со своей гелиоцентрической долготой.

Затем надо изобразить на чертеже орбиту планеты. Как уже отмечалось, ее можно считать круговой и изображать с помощью циркуля. Крайне важно соблюсти пропорции между радиусами орбит Земли и планеты, в противном случае измерения углов транспортиром окажутся неверными. Напомним, что радиус орбиты Меркурия примерно , Венеры –, Марса –, Юпитера –

Теперь можно наносить на этот чертеж расположение планеты либо по ее известной гелиоцентрической эклиптической долготе , либо по заданной конфигурации.

Построив на чертеже положения планет относительно Солнца, можно измерить транспортиром их геоцентрические долготы и по разности

,

(7.16)

определить условия их видимости с Земли, полагая, что в среднем планета становится видимой при удалении от Солнца на угол около 15º.

В действительности же условия видимости планет зависят не только от их удаления от Солнца, но также и от их склонения и от географической широтыместа наблюдения, которая влияет на продолжительность сумерек и на высоту планет над горизонтом.

Так как положение Солнца на эклиптике хорошо известно для каждого дня года, то по звездной карте и по значениям легко указать созвездие, в котором находится планета в тот же день года. Решение этой задачи облегчается тем, что на нижнем обрезе карт Малого звездного атласа А.А. Михайлова красными числами проставлены даты, в которые отмеченные ими круги склонения кульминируют в среднюю полночь. Эти же даты показывают приблизительное положение Земли на своей орбите по наблюдениям с Солнца. Поэтому, определив по карте экваториальные координатыиточки эклиптики, кульминирующей в среднюю полночь заданной даты, легко найти для этой же даты экваториальные координаты Солнца

(7.17)

и по ним показать его положение на эклиптике.

По гелиоцентрической долготе планет легко вычислить дни (даты) наступления их различных конфигураций. Для этого достаточно перейти к системе отсчета, связанной с планетой. Это предполагает, что в конечном итоге мы планету будем считать неподвижной, а Землю – движущейся по своей орбите, но с относительной угловой скоростью.

Получим необходимые формулы для изучения движения верхней планеты. Пусть в некоторый день года гелиоцентрическая долгота верхней планеты есть, а гелиоцентрическая долгота Земли –. Верхняя планета движется медленнее Земли (), которая догоняет планету, и в какой-то день годапри гелиоцентрической долготе планетыи Землинаступит искомая конфигурация планеты. Тогда

,

(7.18)

,

(7.19)

откуда, обозначив ,и, получим

(7.20)

и найдем

.

(7.21)

Легко видно, что представляет собой угловой путь Земли по орбите, проходимый Землей с относительной угловой скоростьюза промежуток времени. Поэтому для вычисленияможно полагать планету неподвижной и, взяв разностьмежду разностями гелиоцентрической долготы Земли и планеты в моменты времении(или найдяпо чертежу), сразу определить. Для вычисления же гелиоцентрической долготы планетыи Землина датуиспользуются формулы (7.18) и (7.19).

Очевидно, те же формулы (7.18) – (7.21) служат для вычисления дней наступления конфигураций нижних планет с той лишь разницей, что из-за большой скорости движения нижней планеты по сравнению со скоростью движения Земли в формулы следует подставлять и дугу, которую проходит нижняя планета от одной конфигурации до другой при условии неподвижной Земли.

Все рассмотренные выше задачи следует решать приближенно, округляя значения до 0,01 астрономической единицы,и– до 0,01 года и– до целых суток.