Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

[Boyd]_cvxslides

.pdf
Скачиваний:
7
Добавлен:
03.06.2015
Размер:
1.74 Mб
Скачать

example (m = 100, n = 30): histogram of residuals for penalties

φ(u) = |u|,

φ(u) = u2,

φ(u) = max{0, |u|−a},

φ(u) = − log(1−u2)

 

40

 

 

 

 

p = 1

 

 

 

 

 

 

0

 

 

 

 

 

−2

−1

0

1

2

p = 2

10

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

Deadzone

−2

−1

0

1

2

20

 

 

 

 

0

 

 

 

 

 

 

 

 

 

Log barrier

−2

−1

0

1

2

10

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

−2

−1

0

1

2

 

 

 

r

 

 

shape of penalty function has large e ect on distribution of residuals

Approximation and fitting

6–5

Huber penalty function (with parameter M)

 

M(2|u| − M) |u| > M

φhub(u) =

u2

|u| ≤ M

linear growth for large u makes approximation less sensitive to outliers

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

1.5

 

 

 

 

 

 

 

 

)

 

 

 

 

10

 

 

 

 

(u

1

 

 

 

)

 

 

 

 

hub

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t(f

 

 

 

 

φ

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

−10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

−20

 

 

 

 

 

−1.5 −1 −0.5 0

0.5

1

1.5

−10

−5

0

5

10

 

u

 

 

 

 

 

t

 

 

left: Huber penalty for M = 1

right: a ne function f(t) = α + βt fitted to 42 points ti, yi (circles) using quadratic (dashed) and Huber (solid) penalty

Approximation and fitting

6–6

Least-norm problems

minimize

kxk

subject to

Ax = b

(A Rm×n with m ≤ n, k · k is a norm on Rn)

interpretations of solution x = argminAx=b kxk:

geometric: x is point in a ne set {x | Ax = b} with minimum distance to 0

estimation: b = Ax are (perfect) measurements of x; x is smallest (’most plausible’) estimate consistent with measurements

design: x are design variables (inputs); b are required results (outputs) x is smallest (’most e cient’) design that satisfies requirements

Approximation and fitting

6–7

examples

least-squares solution of linear equations (k · k2): can be solved via optimality conditions

2x + AT ν = 0, Ax = b

• minimum sum of absolute values (k · k1): can be solved as an LP

minimize

1T y

subject to

−y x y, Ax = b

tends to produce sparse solution x

extension: least-penalty problem

minimize

φ(x1) + · · · + φ(xn)

subject to

Ax = b

φ : R → R is convex penalty function

Approximation and fitting

6–8

Regularized approximation

minimize (w.r.t. R2+) (kAx − bk, kxk)

A Rm×n, norms on Rm and Rn can be di erent

interpretation: find good approximation Ax ≈ b with small x

estimation: linear measurement model y = Ax + v, with prior knowledge that kxk is small

optimal design: small x is cheaper or more e cient, or the linear model y = Ax is only valid for small x

robust approximation: good approximation Ax ≈ b with small x is less sensitive to errors in A than good approximation with large x

Approximation and fitting

6–9

Scalarized problem

minimize kAx − bk + γkxk

solution for γ > 0 traces out optimal trade-o curve

other common method: minimize kAx − bk2 + δkxk2 with δ > 0

Tikhonov regularization

minimize kAx − bk22 + δkxk22

can be solved as a least-squares problem

 

 

 

 

 

 

 

 

A

 

b

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

minimize

 

δI

x −

0

2

solution x

 

= (A

T

A + δI)

−1

A

T

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

Approximation and fitting

6–10

Optimal input design

linear dynamical system with impulse response h:

Xt

 

y(t) =

h(τ)u(t − τ), t = 0, 1, . . . , N

 

 

 

 

 

τ=0

 

 

 

 

 

 

 

 

 

 

 

 

input design problem: multicriterion problem with 3 objectives

 

 

 

1.

tracking error with desired output ydes: Jtrack =

N

(y(t)

 

y

 

(t))2

2.

input magnitude: Jmag =

N

u(t)2

 

 

Pt=0

 

 

des

 

 

 

 

t=0

 

 

 

 

 

 

 

 

 

3.

input variation: Jder =

 

N−1

(u(t + 1)

 

u(t))2

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

t=0

 

 

 

 

 

 

 

 

 

P

track desired output using a small and slowly varying input signal regularized least-squares formulation

minimize Jtrack + δJder + ηJmag

for fixed δ, η, a least-squares problem in u(0), . . . , u(N)

Approximation and fitting

6–11

example: 3 solutions on optimal trade-o surface

(top) δ = 0, small η; (middle) δ = 0, larger η; (bottom) large δ

 

5

 

 

 

 

u(t)

0

 

 

 

 

−5

 

 

 

 

 

 

 

 

 

−100

50

100

150

200

 

4

 

t

 

 

 

 

 

 

 

 

2

 

 

 

 

(t)

0

 

 

 

 

u

 

 

 

 

 

 

−2

 

 

 

 

 

−40

50

100

150

200

 

4

 

t

 

 

 

 

 

 

 

 

2

 

 

 

 

(t)

0

 

 

 

 

u

 

 

 

 

 

 

−2

 

 

 

 

 

−40

50

100

150

200

 

 

 

t

 

 

Approximation and fitting

 

1

 

 

 

 

(t)

0.5

 

 

 

 

0

 

 

 

 

y

 

 

 

 

 

−0.5

 

 

 

 

 

−1

 

 

 

 

 

0

50

100

150

200

 

1

 

t

 

 

 

 

 

 

 

(t)

0.5

 

 

 

 

0

 

 

 

 

y

 

 

 

 

 

−0.5

 

 

 

 

 

−1

 

100

 

200

 

0

50

150

 

1

 

t

 

 

 

 

 

 

 

(t)

0.5

 

 

 

 

0

 

 

 

 

y

 

 

 

 

 

−0.5

 

 

 

 

 

−1

 

 

 

 

 

0

50

100

150

200

 

 

 

t

 

 

 

 

 

 

 

6–12

Signal reconstruction

minimize (w.r.t. R2+) (kxˆ − xcork2, φ(ˆx))

x Rn is unknown signal

xcor = x + v is (known) corrupted version of x, with additive noise v

variable xˆ (reconstructed signal) is estimate of x

φ : Rn → R is regularization function or smoothing objective

examples: quadratic smoothing, total variation smoothing:

n−1

n−1

X

X

φquad(ˆx) = (ˆxi+1 − xˆi)2,

φtv(ˆx) = |xˆi+1 − xˆi|

i=1

i=1

Approximation and fitting

6–13

quadratic smoothing example

 

 

 

 

 

 

0.5

 

 

 

 

0.5

 

 

 

 

xˆ

0

 

 

 

 

 

 

 

 

 

 

 

 

 

x 0

 

 

 

 

−0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1000

2000

3000

4000

 

 

 

 

 

 

0.5

 

 

 

 

−0.5

 

 

 

 

 

 

 

 

 

 

0

1000

2000

3000

4000

xˆ

0

 

 

 

 

0.5

 

 

 

 

−0.5

 

 

 

 

 

 

 

 

 

0

1000

2000

3000

4000

 

 

 

 

 

 

cor 0

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

xˆ

0

 

 

 

 

−0.5

 

 

 

 

−0.5

 

 

 

 

0

1000

2000

3000

4000

 

0

1000

2000

3000

4000

 

 

i

 

 

 

 

 

i

 

 

 

original signal x and noisy

 

 

three solutions on trade-o curve

 

 

signal xcor

 

 

 

 

kxˆ − xcork2 versus φquad(ˆx)

 

Approximation and fitting

6–14