Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

[Boyd]_cvxslides

.pdf
Скачиваний:
7
Добавлен:
03.06.2015
Размер:
1.74 Mб
Скачать

Multicriterion optimization

vector optimization problem with K = Rq+

f0(x) = (F1(x), . . . , Fq(x))

q di erent objectives Fi; roughly speaking we want all Fi’s to be small

feasible x is optimal if

y feasible = f0(x ) f0(y)

if there exists an optimal point, the objectives are noncompeting

• feasible xpo is Pareto optimal if

y feasible, f0(y) f0(xpo) = f0(xpo) = f0(y)

if there are multiple Pareto optimal values, there is a trade-o between the objectives

Convex optimization problems

4–42

Regularized least-squares

minimize (w.r.t. R2+) (kAx − bk22, kxk22)

 

25

 

 

 

 

 

2 2

20

 

 

O

 

 

 

 

 

 

 

k

 

 

 

 

 

kx

15

 

 

 

 

 

) =

 

 

 

 

 

10

 

 

 

 

 

(x

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

F

5

 

 

 

 

 

 

 

 

 

 

 

 

00

10

20

30

40

50

 

 

F1(x) = kAx − bk22

 

example for A R100×10; heavy line is formed by Pareto optimal points

Convex optimization problems

4–43

Risk return trade-o in portfolio optimization

minimize (w.r.t. R+2 )

(−p¯T x, xT Σx)

subject to

1T x = 1, x 0

x Rn is investment portfolio; xi is fraction invested in asset i

p Rn is vector of relative asset price changes; modeled as a random variable with mean p¯, covariance Σ

T x = E r is expected return; xT Σx = var r is return variance

example

 

 

 

 

 

 

 

 

 

 

15%

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

mean return

 

 

 

 

allocation x

x(4)

x(3)

x(2)

 

10%

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

x(1)

 

 

 

 

 

 

 

5%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

0%

0%

10%

20%

 

0%

 

10%

20%

standard deviation of return

standard deviation of return

Convex optimization problems

4–44

Scalarization

to find Pareto optimal points:

choose λ K 0 and solve scalar problem

minimize

λT f0(x)

 

subject to

fi(x) ≤ 0,

i = 1, . . . , m

 

hi(x) = 0,

i = 1, . . . , p

if x is optimal for scalar problem, then it is Pareto-optimal for vector optimization problem

O

f0(x1)

f0(x3)

λ1 f0(x2) λ2

for convex vector optimization problems, can find (almost) all Pareto optimal points by varying λ K 0

Convex optimization problems

4–45

Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

λT f0(x) = λ1F1(x) + · · · + λqFq(x)

examples

• regularized least-squares problem of page 4–43

take λ = (1, γ) with γ > 0

minimize kAx − bk22 + γkxk22

for fixed γ, a LS problem

 

20

 

 

 

 

 

15

 

 

 

 

2 2

 

 

 

 

 

k

10

 

 

 

 

kx

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

γ = 1

 

 

 

00

5

10

15

20

 

 

 

kAx − bk22

 

 

Convex optimization problems

4–46

• risk-return trade-o of page 4–44

minimize

−p¯T x + γxT Σx

subject to

1T x = 1, x 0

for fixed γ > 0, a quadratic program

Convex optimization problems

4–47

Convex Optimization — Boyd & Vandenberghe

5. Duality

Lagrange dual problem

weak and strong duality

geometric interpretation

optimality conditions

perturbation and sensitivity analysis

examples

generalized inequalities

5–1

Lagrangian

standard form problem (not necessarily convex)

minimize

f0(x)

 

subject to

fi(x) ≤ 0,

i = 1, . . . , m

 

hi(x) = 0,

i = 1, . . . , p

variable x Rn, domain D, optimal value p

Lagrangian: L : Rn × Rm × Rp → R, with dom L = D × Rm × Rp,

m

p

X

X

L(x, λ, ν) = f0(x) +

λifi(x) + νihi(x)

i=1

i=1

weighted sum of objective and constraint functions

λi is Lagrange multiplier associated with fi(x) ≤ 0

νi is Lagrange multiplier associated with hi(x) = 0

Duality

5–2

Lagrange dual function

Lagrange dual function: g : Rm × Rp → R,

 

 

 

 

g(λ, ν) =

inf L(x, λ, ν)

 

 

 

 

 

 

xD

 

 

 

 

 

 

 

 

 

 

 

m

 

p

 

 

 

 

 

 

X

 

X

 

 

=

inf

f

(x) +

λ f

(x) +

ν

h

(x)

xD

0

 

i i

 

i

i

!

 

 

 

 

i=1

 

i=1

 

 

g is concave, can be −∞ for some λ, ν

lower bound property: if λ 0, then g(λ, ν) ≤ p proof: if x˜ is feasible and λ 0, then

f0(˜x) ≥ L(˜x, λ, ν) ≥ inf L(x, λ, ν) = g(λ, ν)

xD

minimizing over all feasible x˜ gives p ≥ g(λ, ν)

Duality

5–3

Least-norm solution of linear equations

minimize

xT x

subject to

Ax = b

dual function

Lagrangian is L(x, ν) = xT x + νT (Ax − b)

to minimize L over x, set gradient equal to zero:

xL(x, ν) = 2x + AT ν = 0 = x = −(1/2)AT ν

• plug in in L to obtain g:

g(ν) = L((−1/2)AT ν, ν) = −14νT AAT ν − bT ν a concave function of ν

lower bound property: p ≥ −(1/4)νT AAT ν − bT ν for all ν

Duality

5–4