Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты.rtf
Скачиваний:
10
Добавлен:
01.05.2015
Размер:
1.31 Mб
Скачать

Зависимые и независимые события. Условная вероятность

Различают события зависимые и независимые. Два события называются независимыми, если появление одного из них не изменяет вероятность появления другого. Например, если в цехе работают две автоматические линии, по условиям производства не взаимосвязанные, то остановки этих линий являются независимыми событиями.

Несколько событий называются независимыми в совокупности, если любое из них не зависит от любого другого события и от любой комбинации остальных.

События называются зависимыми, если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая. Вероятность одного события , вычисленная в предположении осуществления другого события, называетсяусловной вероятностью события и обозначается.

11 билет

Произведение событий. Произведением двух событий А и В называют событие АВ, состоящее в совместном появлении (совмещении) этих событий. Например, если А — деталь годная, В — деталь окрашенная, то АВ — деталь годна и окрашена.

Произведением нескольких событий называют событие, состоящее в совместном появлении всех этих событий. Например, если А, В, С — появление «герба» соответственно в первом, втором и третьем бросаниях монеты, то АВС — выпадение «герба» во всех трех испытаниях.

Теорема. Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:

Р (АВ) = Р (А) РA (В).     (*)

Доказательство

З а м е ч ан и е. Применив формулу (*) к событию ВА, получим

Р (ВА) = Р (В) РB (А),

или, поскольку событие ВА не отличается от события АВ,

Р(АВ) = Р (В) РB (А).     (**)

Сравнивая формулы (*) и (**), заключаем о справедливости равенства

Р (А) РA (В) = Р (В) РB (А).     (***)

С л е д с т в и е. Вероятность совместного появления нескольких событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились:

где

является вероятностью события An, вычисленной в предположении, что события А12,..., Аn — 1 наступили. В частности, для трех событий

Р (AВС) = Р (А) РA (В) РAB (С).

Заметим, что порядок, в котором расположены события, может быть выбран любым, т. е. безразлично какое событие считать первым, вторым и т. д.

12 билет

Формула полной вероятности позволяет вычислить вероятность интересующего события через условные вероятности этого события в предположении неких гипотез, а также вероятностей этих гипотез.

Пусть дано вероятностное пространство , и полная группа попарно несовместных событий , таких что

Пусть — интересующее нас событие. Тогда

.

13 билет

Теорема 9   (формула Байеса(1)). Пусть — полная группа событий, и — некоторое событие, вероятность которого положительна. Тогда условная вероятность того, что имело место событие , если в результате эксперимента наблюдалось событие , может быть вычислена по формуле:

Формула Байеса:

,

где

 — априорная вероятность гипотезы A (смысл такой терминологии см. ниже);

 — вероятность гипотезы A при наступлении события B (апостериорная вероятность);

 — вероятность наступления события B при истинности гипотезы A;

 — полная вероятность наступления события B.

14 билет

Формула Бернулли — формула в теории вероятностей, позволяющая находить вероятность появления события при независимых испытаниях. Формула Бернулли позволяет избавиться от большого числа вычислений — сложения и умножения вероятностей — при достаточно большом количестве испытаний. Названа в честь выдающегося швейцарского математика Якоба Бернулли, выведшего формулу.

Теорема. Если вероятность наступления события в каждом испытании постоянна, то вероятность того, что событие наступит раз в независимых испытаниях, равна: , где .

15 билет

Теорема Муавра  Лапласа — одна из предельных теорем теории вероятностей, установлена Лапласом в 1812 году. Если при каждом из независимых испытаний вероятность появления некоторого случайного события равна () и  — число испытаний, в которых фактически наступает, то вероятность справедливости неравенства близка (при больших ) к значению интеграла Лапласа. Если в схеме Бернулли n стремится к бесконечности, p (0 < p < 1) постоянно, величина ограничена равномерно по m и n , то

где c > 0c — постоянная.

Приближённую формулу

рекомендуется применять при n > 100 и npq > 20.

16 билет

Теорема. Если вероятность наступления событияв каждом испытании постоянна и мала, а число независимых испытанийдостаточно велико, то вероятность наступления событияровнораз приближенно равна

,(3.4)

где .

17 билет

Поток событий — последовательность событий, которые наступают в случайные моменты времени