Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по математике- часть 3.doc
Скачиваний:
162
Добавлен:
16.04.2015
Размер:
393.22 Кб
Скачать

Дифференцируемость функции

Нахождение производной функции называется ее дифференцированием.

Если функция в точке х имеет конечную производную, то функция называется дифференцируемойв этой точке. Функция, дифференцируемая во всех точках промежуткаX, называется дифференцируемой на этом промежутке.

Теоремао зависимости между непрерывностью и днфференцируемостью функции: если функция дифференцируема в точке, то она в этой точке непрерывна.

Без доказательства.

Замечание: обратное утверждение в общем случае не является верным, т.е. если функция непрерывна в данной точке, то она не обязательно в ней дифференцируема. Непрерывность функции является необходимым, но не достаточным условием ее дифференцируемости.

Приведем пример функции, которая, являясь непрерывной в точке х = 0, при этом недифференцируема в этой точке. На рисунке 3.2 представлен график функции у = |х|. Она непрерывна в точке х = 0. Производная функция (если она существует) равна . Последний предел не существует, так как односторонние пределы в этой точке не совпадают (). Следовательно, производная в точке х = 0 не существует (геометрически это означает отсутствие касательной к кривой в точке х = 0).

Frame2

Схема вычисления производной

Схема нахождения производной функции у = f(х) включает следующие этапы:

1. Дают аргументу х приращение х0 и находят значение функции у =f(х +х).

2. Находят приращение функции у =f(х +х) -f(х).

3. Составляют отношение у/х.

4. Находят его предел при х0 (если этот предел существует).

Рассмотрим эти этапы на примере функции у = х3. Чтобы найти ее производную, дадим аргументу приращениех0 и найдем у =f(х +х) = = (х +х)3= х3+ 3х2х + 3хх2+х3. Затем найдем приращение функцииу =f(х +х) -f(х) =f(х +х) - х3 = 3х2х + 3хх2+х3=х (3х2+ 3хх + +х2). Составим отношениеу/х = 3х2+ 3хх +х2. Найдем его предел.

Можно доказать, что для любого n(xn)` =nxn-1.

Основные правила дифференцирования

Рассмотрим их без доказательства.

1. Производная постоянной равна нулю, т.е. с' = 0 (это очевидно, так как любое приращение постоянной функции равно нулю).

2. Производная аргумента равна 1, т.е. х` = 1 (правило следует из формулы для производной степенной функции).

3. Производная алгебраической суммы конечного числа дифференцируемых функций равна сумме производных этих функций: (u+v)' =u' +v'.

4. Производная произведения двух дифференцируемых функций равна произведению производной первого сомножителя на второй плюс произведение первого сомножителя на производную второго: (uv)'=u'v+v'u.

Следствие 1. Постоянный множитель можно выносить за знак производной: (сu)' = сu'.

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные, например: (uvw)' =u'vw+uv'w+ +uvw'.

5. Производная частного двух дифференцируемых функций может быть найдена по формуле .

6. Если у = f(u) иu=(х) - дифференцируемые функции от своих аргументов, то производная сложной функции у =f([(х)]) существует и равна производной данной функции по промежуточному аргументуu, умноженной на производную самого промежуточного аргумента по независимой переменной х:y` =f`(u)*u`.

7. Для дифференцируемой функции с производной, не равной нулю, производная обратной функции равна обратной величине производной данной функции: .

Проиллюстрируем последнее правило на примере взаимно обратных функций, производные которых мы уже знаем. Возьмем степенную функцию y=x3,y` = 3x2. Такую же производную можно получить, если воспользоваться обратной функцией. В самом деле,. По правилу.