Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лаб. работа по химии 1.doc
Скачиваний:
32
Добавлен:
09.04.2015
Размер:
164.35 Кб
Скачать

3. Энтропия реакции.

Энтропией реакции называется изменение энтропии ΔS, сопутствующее превращению реа­гентов в продукты реакции. Энтропию реакции аА + ЬВ = сС + dD рассчитывают по формуле:

ΔS = (cSС + dSD) - (aSA + bSB) (3.1)

где ΔS - энтропия реакции ; S - абсолютные значения энтропий продуктов реакции С и D и реагентов А и В; с, d, a, b - стехиометрические коэффициенты.

Энтропия S - единственная функция состояния, абсолютное значение которой можно оп­ределить для любого состояния системы. Для 1 моля вещества абсолютное значение энтропии опре­деляется по формуле: S = RlnW (3.2) где R = 8,314 Дж/(мольК) - универсальная газовая постоянная; W - термодинамическая вероятность рас­сматриваемого состояния - безразмерная величина.

В термодинамических расчётах обычно определяют стандартные энтропии реакций ΔS0298. Для реакции аА + bВ = сС + dD значение стандартной энтропии рассчитывают по формуле:

ΔS°298 = (cS°298.C + dS°298,D) - (aS0298.А + bS°298,B) (3.3)

где S°298— табличные значения абсолютных стандартных энтропий соединений в Дж/(моль К) - см. таб­лицу приложения, a ΔS°298 - стандартная энтропия реакции в Дж/К.

Если условия отличаются от стандартных, в практических термодинамических расчётах допуска­ется использование приближения: ΔSΔS°298 (3.4) Выражение (3.4) отражает слабую зависимость величины энтропии реакции от условий её проведения.

Пример 3.1.. Расчёт энтропии реакции, выраженной уравнением

4NH 3(г) + 5O2 (г) = 4NO(г) + + 6Н2O(г), при давлении 202.6 кПа и температуре 500°С (773К).

Согласно условию, реакция протекает при практически реальных значениях давления и темпе­ратуры, при которых допустимо приближение (3.4), т.е ΔS773 ΔS0298 . Значение стандартной энтро­пии реакции, рассчитанной по формуле (3.3), равно:

ΔS773 ≈ ΔS0 298 = (4S0298.no + 6S°298.H2O) - (4S0298.nh3 + 5S0298.02) = (4*210,62 + 6*188.74) - (4*192,5 + 5*205,03) = 179,77Дж/К

__________________________________

1* Состояния веществ в уравнениях реакций указываются с помощью буквенных индексов: (к) - кристаллическое, (т) - твёр­дое, (ж) - жидкое, (г) - газообразное, (р) - растворённое.

2* По определению, ΔН0298обр простых веществ равны нулю.

3* Δh0298обрО2. В формуле не фигурирует ввиду её равенства нулю.

Поскольку энтропия характеризует степень неупорядоченности системы (её хаотичность) знак изменения энтропии (знак ΔS) можно оценить по уравнению реакции. В рассмотренном примере 3.1 увеличение энтропии (ΔS>0) происходит в связи с увеличением числа молей газа: согласно уравне­нию реакции из 9 молей реагирующих газов образуется 10 молей газообразных продуктов.

4. Энергия Гиббса реакции.

Энергией Гиббса реакции называется изменение энергии Гиббса ΔG при протекании хими­ческой реакции. Так как энергия Гиббса системы G = Н - TS, её изменение в процессе определяется по формуле: ΔG = ΔH-TΔS (4.1)

где Т - абсолютная температура в Кельвинах.

Энергия Гиббса химической реакции характеризует возможность её самопроизвольного проте­кания при постоянных давлении и температуре. Если ΔG<0, то реакция может протекать самопроиз­вольно, при ΔG>0 самопроизвольное протекание реакции невозможно, если же ΔG=0, система на­ходится в состоянии равновесия.

Для расчёта энергии Гиббса реакции по формуле (4.1) отдельно определяются ΔН и ΔS. При этом в практических расчётах пользуются приближениями (2.4) и (3.4).

Пример 4.1. Расчёт энергии Гиббса реакции, выраженной уравнением 4NH 3(г) + 5O2 (г) = 4NO(г) + + 6Н2O(г), при давлении 202.6 кПа и температуре 500°С (773К).

Согласно условию, реакция протекает при практически реальных значениях давления и темпе­ратуры. при которых допустимы приближения (2.4) и (3.4), т.е.

ΔН773 ΔН0298 = - 904.8 кДж = - 904800 Дж. (см. пример 2.2),

а ΔS773 ΔS0298 = 179,77 Дж/К. (см. пример 3.1).

После подстановки значений ΔH0298 и ΔS°298 в формулу (4.1) получаем:

ΔG773 = ΔH773 -773 ΔS773 ΔН0298 -773ΔS0298 = - 904800 773*179, 1043762 Дж= - 1043,762 кДж.

Полученное отрицательное значение энергии Гиббса реакции ΔG773 указывает на то, что дан ная реакция в рассматриваемых условиях может протекать самопроизвольно.

Если реакция протекает в стандартных условиях при температуре 298К, расчёт её энергии Гиббса ( стандартной энергии Гиббса реакции ) можно производить аналогично расчёту стандартной теплоты реакции по фрмуле, которая для реакции, выраженной уравнением аА + ЬВ = сС + dD, имеет вид:

ΔG°298 = (cΔG°298,o6p,C + dΔG°298,o6p,D) - (aΔG 298,обрА + bΔG° 298,обр,в) (4.2)

где ΔG°298,o6p. - стандартная энергия Гиббса образования соединения в кДж/моль (табличные значе­ния) - энергия Гиббса реакции, в которой при температуре 298К образуется 1 моль данного соеди­нения, находящегося в стандартном состоянии, из простых веществ, также находящихся в стан­дартных состояниях4*, a Δ298 - стандартная энергия Гиббса реакции в кДж.

Пример 4.2. Расчёт стандартной энергии Гиббса реакции, протекающей по уравнению: 4NH 3(г) + 5O2 (г) = 4NO(г) + + 6Н2O(г).

В соответствии с формулой (4.2) записываем5*:

__________________________________________________________

4* Согласно определению, стандартная энергия Гиббса образования простых веществ равна нулю

5* ΔG0298 O2 в выражении не фигурирует ввиду ее равенства нулю

ΔG0298 = (4ΔG0298.no + 6ΔG0298.H2O) - 4 ΔG0298.NHз После подстановки табличных значений ΔG0298.обР получаем: ΔG0298 = (4(86,69) + 6(-228, 76)) - 4(-16,64) = - 959.24 кДж. По полученному результату видно, что так же, как и в примере 4.1, в стандартных условиях рассматриваемая реакция может протекать самопроизвольно

.По формуле (4.1) можно определить температурный диапазон самопроизвольного протека­ния реакции. Так как условием самопроизвольного протекания реакции является отрицательность ΔG (ΔG<0), определение области температур, в которой реакция может протекать самопроизвольно, сво­дится к решению неравенства (ΔH-TΔS)<0 относительно температуры.

Пример 4.3. Определение температурной области самопроизвольного протекания реакции, вы­раженной уравнением: СаСО3(т) = СаО(т) + СO2(г).

Находим ΔH u ΔS. ΔH ≈ ΔH°298 = (ΔН0298,СаО + ΔН°298,CO2) - ΔН°298,CaCO3 = (-635,1 + (-393,51)) - (-1206) = 177,39кДж = 177390 Дж; ΔS ≈ ΔS0298 = (S0298,СаО + S0298.С02) - S0298,СаСОз = (39,7 + 213,6)- 92,9 = 160,4 Дж/К. Подставляем значения ΔН и ΔS в неравенство и решаем его относительно Т: 177390 – Т*160,4<0, или 177390<Т*160,4, или Т>1106. Т.е. при всех температурах, больших 1106К, бу­дет обеспечиваться отрицательность ΔG и, следовательно, в данном температурном диапазоне бу­дет возможным самопроизвольное протекание рассматриваемой реакции.