Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.ДОЗ-ЭФ.doc
Скачиваний:
56
Добавлен:
15.03.2015
Размер:
389.12 Кб
Скачать

4.1.3.2. Определение безопасных доз действия токсикантов

В ряде случаев возникает необходимость количественно определить величину максимальной недействующей (безопасной) дозы токсикантов.

Методика решения этой задачи предложена Годдам. Исследование строится на установлении зависимости «доза-эффект» в группе животных. Желательно, чтобы оцениваемый эффект был достаточно чувствительным и оценивался не в альтернативной форме (например снижение активности энзима, подъем артериального давления, замедление роста, нарушение кроветворения и т.д.). График зависимости строится в координатах «логарифм дозы - выраженность эффекта». Анализ кривой позволяет оценить ряд показателей. Поскольку кривая, как правило имеет S-образную форму, вычленяют участок в пределах которого зависимость носит линейный характер. Определяют крутизну прямой (b). Пороговый эффект (yS) определяют по формуле: yS = tS, где t - коэффициент Стьюдента, определяемый по соответствующим таблицам; S - величина стандартного отклонения, определяемая из данных опта. Пороговая доза (DS) - это такая доза, действуя в которой вещество вызывает пороговый эффект. Для безопасной дозы (DI) имеем

log DI = log DS - 6(S/b)

Пример, представленный на рисунке 14, комментирует определение безопасной дозы.

Рисунок 14. Графический метод определения порога безопасного действия ксенобиотика.

Пример. В течение нескольких недель крысам в корм добавляли систокс (инсектицид) в различных концентрациях (части на миллион по массе). Эффект оценивали по степени угнетения активности холинэстеразы крови. Каждая точка на графике представляет собой среднюю величину из 6 - 12 наблюдений. На графике рисунка 14 по оси «у» представлены данные о различии активности энзима у интактных и экспериментальных животных (в относительных единицах от 0 до 1,0); по оси «х» - логарифм концентрации токсиканта. Как следует из полученных данных, начиная с определенной дозы (концентрации) зависимость приобретает линейный характер. Крутизна прямой (b) равна - 0,66; среднее значение всех стандартных отклонений в отдельных группах S = 0,097; t - 2. Отсюда пороговый эффект yS = 2 х 0,097 = 0,194. Соответствующее значение DS , как следует из графика, равно 0,42. Тогда имеем: log DI = 0,42 - 6(0,097/0,66) = -0,462. Таким образом, безопасное (недействующее) содержание систокса в пище составляет 0,34 части на миллион.

4.1.3.3. Интерпретация и практическое использование результатов

Как правило основной вывод, который делает токсиколог при установлении позитивной зависимости «доза-эффект», состоит в том, что между воздействием исследуемого вещества и развитием токсического процесса существует причинно-следственная связь. Однако информация о зависимости должна интерпретироваться только относительно условий, в которых она получена. Большое количество факторов влияет на её характер, причем специфично для каждого вещества и биологического вида, на представителей которого вещество действует. В этой связи необходимо учитывать ряд обстоятельств:

1. Точность количественной характеристики значения ЛД50 достигается путем тщательного проведения эксперимента и адекватной статистической обработки получаемых результатов. Если при повторении эксперимента по определению токсичности получают количественные данные, отличные от ранее полученных, это может быть следствием вариабильности свойств использованного биологического объекта и условий окружающей среды.

2. Важнейшей характеристикой опасности вещества является время наступления смерти после воздействия токсиканта. Так, вещества с одинаковым значением ЛД50, но разным временем наступления смерти могут представлять различную опасность. Быстро действующие вещества часто рассматриваются как более опасные. Однако вещества «замедленного действия» с очень продолжительным скрытым периодом часто склонны к кумуляции в организме и в силу этого также чрезвычайно опасны. К числу быстро действующих токсикантов относятся боевые отравляющие вещества (ФОВ, синильная кислота, вещества раздражающего действия и т.д.). Вещества замедленного действия - это полигалогенированные полициклические углеводороды (галогенированные диоксины, дибензофураны и т.д.), некоторые металлы (кадмий, талий, ртуть и т.д.) и многие другие.

3. Более полная интерпретация полученных результатов по оценке токсичности, помимо определения количественных характеристик, требует детального изучения причин смерти (см. соответствующий раздел). Если вещество может вызвать различные потенциально смертельные эффекты (остановка дыхания, остановка сердечной деятельности, коллапс и т.д.), необходимо представлять какой из эффектов является ведущим, а также может ли этот феномен стать причиной усложнения зависимости «доза-эффект». Например, различные биологические эффекты могут быть причиной гибели в острой и отставленной фазе интоксикации. Так, интоксикация дихлорэтаном уже в первые часы может привести экспериментальное животное к гибели вследствие угнетения ЦНС (наркотический, неэлектролитный эффект). В поздние периоды интоксикации животное погибает от острой почечной и печеночной недостаточности (цитотоксический эффект). Очевидно это имеет значение и при определении количественных характеристик токсичности. Так, трет-бутилнитрит при внутрибрюшинном введении мышам и регистрации смертельного эффекта в течение 30 минут имеет величину ЛД50 равную 613 мг/кг; при регистрации смертельных случаев в течение 7 суток, ЛД50 составляет 187 мг/кг. Смерть в первые минут, по-видимому, наступает в результате ослабления тонуса сосудов и метгемоглобинообразования, в позднем периоде, от поражения печени.

4. Величина ЛД50, полученная в остром опыте, не является характеристикой токсичности вещества при его многократном подостром или хроническом воздействии. Так, для веществ с высокой способностью к кумуляции, значение смертельной концентрации токсиканта в среде, определенное при однократном введении, может оказаться существенно выше концентрации, вызывающей смерть при длительном воздействии. Для слабо кумулирующих веществ эти различия могут быть не столь существенными.

На практике данные о зависимости «доза-эффект» и значения величин ЛД50 часто используют в следующих ситуациях:

1. Для характеристики острой токсичности веществ в ходе рутинных токсикологических исследований и сравнения токсичности нескольких химических соединений.

На основе полученных характеристик ксенобиотик может быть отнесен к одному из четырех классов токсичности (таблица 6).

Таблица 6. Классификация ксенобиотиков по степени токсичности

Степень токсичности

Энтеральное введение

Ингаляционное введение

ЛД50 (мг/кг)

ЛК50 (мг/л)

ПДК (мг/м3)

Чрезвычайно токсичные

Высокотоксичные

Умеренно токсичные

Малотоксичные

менее 15

15 - 150

151 - 1500

более 1500

менее 1

1 - 10

11 - 40

более 40

менее 1

10

100

более 100

(Заугольников С.Д. и соавт., 1967)

Отнесение веществ к мало- или высокотоксичным во многом носит субъективный характер. Так, Hodg G. и Gleason S. (1975) предлагают иную шкалу токсичности ксенобиотиков (таблица 7).

Таблица 7. Шкала токсичности (смертельное действие) веществ, при их поступлении через рот (По Hodg G., Gleason S., 1975)

Степень токсичности

Сухое вещество (мг/кг)

Жидкое вещество

(на человека)

Сверхтоксичные

Высокотоксичные

Токсичные

Умеренно токсичные

Малотоксичные

Нетоксичные

менее 5

5 - 50

50 - 500

500 - 5000

5000 - 15000

более 15000

менее 7 капель

7 капель - ложка

ложка - рюмка (30 мл)

30 мл - 0,5 л

0,5 л - 2 л

более 2 л

В настоящее время в России химические вещества принято разделять на 4 класса опасности (таблица 8).

Таблица 8. Классификация химических веществ по степени опасности (ГОСТ 12.1.007-76)

Показатели

Класс опасности

1

2

3

4

ПДК мг/м3

<0,1

0,1-1,0

1,1-10,0

>10,0

ЛД50 p/o мг/кг

<15

15-150

151-5000

<5000

ЛД50 р/cut мг/кг

<100

100-500

501-2500

<2500

ЛК50/2 час мг/м3

<500

500-5000

5001-50000

<50000

КВИО*

>300

300-30

29-3

>3

* КВИО - коэффициент возможности ингаляционного отравления. Определяют, как отношение максимально возможной концентрации токсиканта (пара) в воздухе, к среднесмертельной концентрации

2. Для определения уровней безопасного воздействия токсиканта. Для большинства веществ можно определить дозы, при уменьшении которых, вещества утрачивают способность инициировать токсический процесс. Доза, ниже которой современными методами исследования не выявляется действие химического вещества на биологический объект (организм), называется «пороговой дозой». Концепция пороговости полезна тем, что на её основе с помощью специальных методов определяют, а затем оценивают и юридически утверждают дозы веществ, признаваемые безопасными для человека в условиях повседневной жизни, производства, специальных ситуаций (аварии) - ПДК, МДК, ОБУВ и т.д.

На основе экспериментальных данных по определению зависимости «доза-эффект» также устанавливаются (с учетом представлений о допустимом риске)(см. ниже) пределы допустимого воздействия токсикантов, способных вызывать «беспороговые» эффекты.

3. Для первичной характеристики эффективности специфических противоядий. В ходе подобных исследований обычно устанавливают соотношение параметров кривых зависимости «доза-эффект», полученных в условиях изолированного действия токсиканта и на фоне примененного противоядия (см. ниже).

4.2. Зависимость «доза-эффект» при комбинированном действии нескольких веществ

Схема изучения совместного действия веществ на группе лабораторных животных может быть различной. Обычно изучают выраженность действия одного из веществ в возрастающей дозе на фоне предварительного введения другого вещества в фиксированной дозе. Наиболее часто для объяснения и анализа получаемых результатов используют математический аппарат и представления оккупационной теории. Так, параллельный сдвиг кривой доза-эффект свидетельствует о возможном конкурентном действии препаратов на биомишени в исследуемом организме; понижение или повышение уровня максимального эффекта при совместном действии веществ косвенно указывает на различные точки приложения веществ (рисунок 15).

Рисунок 15. Сочетанное действие апоморфина, ДЛК и галоперидола на двигательную активность крыс в открытом поле при внутрибрюшинном способе введения веществ. (1) - апоморфин; (2) - апоморфин + 0,063 мг/кг галоперидола; (3) - апоморфин + 100 мкг/кг ДЛК; (4) - апоморфин + 100 мкг/кг ДЛК + 0,063 мг/кг галдоперидола. Данные свидетельствуют о потенцирующем действии ДЛК на эффект апоморфина (различные точки приложения веществ) и конкурентном действии галоперидола.

Как следует из данных, представленных на рисунке 15, галоперидол, являясь антагонистом апоморфина, теоретически может использоваться как противоядие при интоксикации последним. Напротив, при интоксикации ДЛК апоморфин усугубит тяжесть развивающегося состояния.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]