Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШПОРЫ-ФИНАЛ.doc
Скачиваний:
516
Добавлен:
10.02.2015
Размер:
528.9 Кб
Скачать

6.Математика и научно-техническая революция Нового времени.

Второй этап взаимоотношений между практической и теоретической математикой оформляется в XVII в., когда в рамках теоретической математики появляются модели, служащие для количественного описания физического мира, а затем, с XIX в., и технических устройств. Начиная с этого времени наблюдается устойчивая тенденция вытеснения практической математики (как самостоятельной дисциплины) и ее превращения в так называемую прикладную математику, т.е. раздел чистой математики, из которого черпаются модели для различных ее приложений.

Указанная тенденция приводит к тому, что развитие математики в этот период (продолжающийся и по сей день) сводится, по сути, к прогрессу математики теоретической. При этом сама «чистая» математика все более и более ориентируется на аксиоматико-дедуктивный метод. Последнее обстоятельство находит свое теоретическое (философское) выражение и обоснование в рамках различных форм априоризма, в конечном итоге восходящих к точке зрения на математику И. Канта. Согласно Канту, математика — точнее один из ее разделов, составляющий своеобразное ядро этой науки, — обладает безусловной (аподиктической) достоверностью, т.е. в принципе не может подвергаться трансформациям, затрагивающим ее сущность. Отсюда с необходимостью следует, что развитие математики (или ее аподиктического ядра) не может носить революционного характера (как это свойственно физике), но сводится исключительно к накоплению результатов (кумулятивный рост) за счет внутренних причин. Две тенденции наличествуют в таком развитии математики: она приобретает все более общий характер (см. выделение трех базисных математических структур у Н. Бурбаки) и одновременно разрастается вширь. Причем создание все более общих, абстрактных структур идет параллельно с поиском их (сугубо математических) интерпретаций.

Ряд признаков свидетельствует, однако, о том, что указанный период в развитии математики, по-видимому, исчерпал свои внутренние потенции и что мы находимся в преддверии нового этапа, контуры которого можно очертить пока лишь весьма приблизительно. Дело в том, что идея редукции всей математики к ее чисто теоретической компоненте, а последней — к аксиоматико-дедуктивной форме, объективно ведет к увеличению разрыва между математикой и насущными потребностями экономического развития, с одной стороны, и математикой и образованием — с другой. Укажем лишь на некоторые характерные явления, свидетельствующие о неблагополучном положении в развитии математики (если взглянуть на нее не изнутри, глазами активно работающего математика, а «снаружи» — с точки зрения общества).

7.Создание неевклидовых геометрий, интерпретации неевклидовых геометрий.

Признание неевклидовых геометрий в XIX в. существенно поколеба­ло истинность кантовского априоризма. Эти геометрии показывали воз­можность существования математических теорий, не обладающих апри­орной и самоочевидной основой. Аксиоматика геометрии Лобачевского и других неевклидовых геометрий не является очевидной, она обладает лишь логической определенностью. Анализ математических понятий показывал также, что многие из них не обладают и конструктивностью в кантовском смысле. Это свидетельствовало о том, что априористское воззрение на математику ограниченно и не определяет ее истинного предмета и метода.

В конце XIX в. в связи с осмыслением статуса неевклидовых геомет­рий и теории множеств стала оформляться новая концепция математики, получившая название формалистской философии математики. Основ­ные ее установки могут быть выражены в виде следующих положений:

Математика не является наукой, исследующей аспекты реальности, она представляет собой лишь метод логической трансляции опытного знания и состоит из совокупности структур, пригодных для этой цели;

Основным требованием к аксиомам математической теории являет­ся не их очевидность и не их связь с опытом, а их непротиворечивость, которая необходима и достаточна для ее приложения к опытным наукам;

К математике неприменимо понятие истинности в смысле опытно­го подтверждения. Математическая теория сама по себе не истинна и не ложна. Она становится таковой только после соединения ее понятий с понятиями опытных наук;

если обоснование содержательной науки состоит в установлении ее истинности, то обоснование математической теории заключается толь­ко в доказательстве логической непротиворечивости ее аксиом. Эти принципы оформились в конце XIX — начале XX в. в работах Г. Кантора, А. Пуанкаре и Д. Гильберта. Ясно, что, принимая этот взгляд на сущность математической теории, мы уходим от трудностей эмпирической и априористской философии математики. От математи­ческой теории не требуется больше ни наглядности, ни рациональной очевидности принципов, не требуется опытного происхождения и кон­структивности понятий. Для математической теории объявляется суще­ственным только одно требование, а именно требование ее непротиво­речивости. Проблема обоснования математической теории понимается с этой точки зрения как строгое доказательство ее непротиворечивости. Философия математики XX в. развивалась в основном в русле этих принципиально новых идей, которые, безусловно, представляют собой более высокий этап в понимании природы математического мышле­ния. Определенная трудность этой концепции состоит в том, что она рассматривает все математические теории как онтологически равно­ценные и не выделяет традиционных теорий как обладающих особым онтологическим статусом.