Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебники 60312.doc
Скачиваний:
5
Добавлен:
01.05.2022
Размер:
16.01 Mб
Скачать

2. Применение в медицине

Неньютоновские жидкости применяются в медицине. Так как кровь является тоже неньютоновской жидкостью, то необходимо уметь определять и контролировать ее вязкость , так как высокая вязкость способствует ряду проблем со здоровьем. По сравнению с кровью нормальной вязкости, густая и вязкая кровь плохо движется по кровеносным сосудам, что ограничивает поступление питательных веществ и кислорода в органы и ткани, и даже в мозг. Если ткани получают недостаточно кислорода, то они отмирают, так что кровь с высокой вязкостью может повредить как ткани, так и внутренние органы. Повреждаются не только части тела, которым нужно больше всего кислорода, но и те, до которых крови дольше всего добираться, то есть, конечности, особенно пальцы рук и ног. При обморожении, например, кровь становится более вязкой, несет недостаточно кислорода в руки и ноги, особенно в ткань пальцев, и в тяжелых случаях происходит отмирание ткани. В такой ситуации пальцы, а иногда и части конечностей приходится ампутировать [3].

3. Жидкий бронежилет

Основным средством защиты личного состава от пуль и осколков в настоящее время является бронежилет. За прошедшие десятилетия он прошел немалый путь эволюции, однако в итоге наибольшее распространение получили только три версии его конструкции, в некоторой мере взаимосвязанные друг с другом. Так, используются бронежилеты на основе металлических пластин, кевларовые и комбинированные, в которых листы кевлара перемежаются пластинами из соответствующего металла. Регулярно предпринимаются попытки приспособить к защите от пуль древние наработки, такие как, к примеру, ламеллярная броня, однако до сих пор не удалось добиться на этом поприще особых успехов. Главная проблема современного бронежилета состоит в соотношении «вес – качество защиты». Иными словами, более надежный бронежилет оказывается тяжелым, а такой, который имеет приемлемый вес – имеет слишком низкий класс защиты. Кстати говоря, именно эту проблему должен был решить кевлар. В 70-х годах прошлого века в ходе исследований было установлено, что кевларовая ткань плотного плетения, проложенная в несколько слоев, эффективно рассеивает энергию пули по всей своей поверхности, благодаря чему пуля не может пробить весь кевларовый пакет. В сочетании с пластиной из подходящего металла (например, титан) это свойство кевларовой ткани позволило создать сравнительно легкие бронежилеты, имеющие те же защитные свойства, что и цельнометаллические. Однако и у кевларо-металлического бронежилета есть свои минусы. В частности, он все равно имеет значительный вес и немалую толщину. В случае с боевой работой солдат это может иметь большое значение: боец вынужден нести на своих плечах дополнительный вес, который можно было бы использовать для того, чтобы взять больше патронов или провианта. Но в данном случае приходится выбирать между полезной нагрузкой и здоровьем, если не жизнью. Так что выбор очевиден. Над решением этой проблемы уже не первый десяток лет бьются ученые всего мира, и уже есть определенные успехи. В 2009 году группа английских ученых под руководством Р. Палмера разработала специальный гель под названием D3O. Его особенность заключается том, что при ударе значительной силы гель становится тверже, при этом сохраняя свою относительно небольшой вес. При отсутствии каких-либо воздействий пакет с гелем оставался мягким и гибким. Гель D3O предлагалось использовать в бронежилетах, специальных модулях для защиты транспорта и даже в качестве мягкой подкладки для солдатских касок. Последний момент выглядит особо интересным. По словам Палмера, каска с такой подкладкой станет пуленепробиваемой. Тем не менее, английское министерство обороны заинтересовалось гелем и выделило лаборатории Палмера грант в 100 тысяч фунтов. В прошедшие с тех пор три года регулярно появлялись новости о ходе работ, фото- и видеоматериалы с испытаний очередной версии геля, но готовой каски или жилета с D3O пока так и не продемонстрировали. Немного позже аналогичный гель был продемонстрирован представителям агентства DARPA. Американский аналог D3O был разработан компанией Armor Holdings. Работает он по точно такому же принципу. Оба геля, по сути, представляют собой то, что в физике именуется неньютоновской жидкостью. Главная особенность таких жидкостей заключается в природе их вязкости. В большинстве случаев это жидкостные растворы твердых веществ с относительно крупными молекулами. Благодаря этому свойству неньютоновская жидкость имеет вязкость, напрямую зависящую от градиента скорости. Иными словами, если с ней взаимодействует тело с низкой скоростью, то оно просто утонет. Если же тело ударит в неньютоновскую жидкость с достаточно большой скоростью, то оно будет заторможено или даже отброшено за счет вязкости и упругости раствора. Подобную жидкость можно сделать даже в домашних условиях из простой воды и крахмала. Такие свойства некоторых растворов известны очень давно, но до применения неньютоновских жидкостей в защите от пуль и осколков дошли сравнительно недавно. Последний на данный момент успешный проект «жидкостной брони» был создан английским отделением компании BAE Systems. Их состав Shear Thickening Liquid (рабочее название bulletproof cream – пулестойкий крем) появился в 2010 году и планируется к использованию не в самостоятельном виде, но в сочетании с кевларовыми листами. Состав своей неньютоновской жидкости для бронежилета BAE Systems по понятным причинам не разглашают, однако, зная физику, можно сделать определенные выводы. Скорее всего, это водный раствор какого-либо вещества (веществ), который имеет наиболее подходящие характеристики вязкости при сильных ударах. В проекте Shear Thickening Liquid дело, наконец, дошло до создания полноценного бронежилета, хотя и опытного. При той же толщине, что у 30-слойного кевларового жилета «жидкостный» имеет втрое меньшее количество слоев синтетической ткани и вдвое меньший вес. Что касается защиты, то «жидкостный бронежилет» с гелем STL имеет почти такие же показатели защиты, как у 30-слойного кевларового. Разница в количестве листов ткани компенсируется специальными полимерными пакетами с неньютоновским гелем. Еще в 2010 году начались испытания готового опытного бронежилета на основе геля. Для этого обстреливались опытные и контрольные образцы. 9-миллиметровые пули патрона 9х19 мм Люгер выстреливались из специальной пневматической пушки с дульной скоростью порядка 300 м/с, что в некоторой мере аналогично большинству типов огнестрельного оружия под этот патрон. Характеристики защиты экспериментального и контрольного бронежилета оказались примерно одинаковыми. Однако у бронежилета с жидкостной защитой есть ряд минусов. Самый очевидный кроется в текучести геля при нормальных условиях: через пулевое отверстие он может вытечь и уровень защиты жилета значительно снизится. Кроме того, неньютоновская жидкость или гель не может полностью поглотить или рассеять всю энергию пули. Соответственно, значительное улучшение характеристик возможно только при одновременном использовании и кевлара, и жидкостных пакетов, и металлических пластин. Очевидно, что от весовых преимуществ в таком случае может не остаться ни следа, конечно, если сравнивать подобный жилет с только кевларовым [7].

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]