Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Методическое пособие 689

.pdf
Скачиваний:
5
Добавлен:
30.04.2022
Размер:
4.35 Mб
Скачать

Относительную молекулярную массу обозначают Мr. Она численно равна сумме относительных атомных масс всех атомов, входящих в состав молекулы вещества, и подсчитывается по формуле вещества. Например, Mr (H2О) будет слагаться из 2

Аr (Н) 2; Аr (O)= 1 16 = 16; Mr (H2О) = 2 + 16 = 18.

Моль. В международной системе единиц (СИ) за единицу количества вещества принят моль. Моль - это количество вещества, содержащее столько структурных или формульных (ФЕ) единиц (молекул, атомов, ионов, электронов или других), сколько содержится атомов в 0,012 кг изотопа углерода 126C.

NA 0,012кгмоль 6,02 10 23 моль-1. 1,993 10-26 кг

Зная массу одного атома углерода 12C (1,993 10-26 кг), вычисляют число атомов NA в 0,012 кг углерода.

Число частиц в 1 моль любого вещества одно и то же. Оно равно 6,02 1023 и называется постоянной Авогадро (обозначается NA, размерность 1/моль или моль-1). Очевидно, в 2

моль углерода будет содержаться 2 6,02 1023 атомов, в 3 моль

- 3 6,02 1023 атомов.

Молярная масса. Обычно ее обозначают M. Молярная масса - величина, равная отношению массы вещества к количеству вещества. Она имеет размерность кг/моль или г/моль. Например, M = m/ или M = m/n , где m - масса в граммах; (ню) или n - количество вещества в молях, M - молярная масса в г/моль - постоянная величина для каждого данного вещества.

Так, если масса молекулы воды равна 2,99 10-26 кг, то молярная масса M (H2O) = 2,99 10-26 кг 6,02 1023 моль-1 = 0,018 кг/моль

или 18 г/моль. В общем случае молярная масса вещества, выраженная в г/моль, численно равна относительной атомной или относительной молекулярной массе этого вещества.

13

Например, относительные атомные и молекулярные массы C, O2, H2S соответственно равны 12, 32, 34, а их молярные массы составляют соответственно 12, 32, 34 г/моль.

1.4. Основные стехиометрические законы химии

Стехиометрия - раздел химии, в котором рассматриваются массовые и объемные отношения между реагирующими веществами. Основу стехиометрии составляют стехиометрические законы: сохранения массы веществ, постоянства состава, кратных отношений, объемных отношений, Авогадро. Они подтвердили атомно-молекулярное учение.

Закон сохранения массы веществ. Впервые он был вы-

сказан М.В. Ломоносовым (1748 г.), а затем экспериментально обоснован в 1756 г.: масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в резуль-

тате реакции. М.В. Ломоносов рассматривал закон сохранения массы веществ и закон сохранения энергии в единстве, как всеобщий закон природы или, используя современную терминологию, как закон сохранения материи, который может быть сформулирован следующим образом: в изолированной системе сумма масс и энергии есть величина постоянная. Вторая часть этого закона утверждает, что Ei = const. Взаимосвязь массы и энергии выражается законом Эйнштейна: E = Δmc2, где E - изменение энергии; m - изменение массы вещества; c - скорость света в вакууме.

Исходя из закона сохранения массы, можно составлять химические уравнения и по ним производить расчет. Он является основой химического анализа.

Закон постоянства состава. Во времена М.В. Ломоно-

сова химические соединения считались определенными, т.е. имеющими постоянный и неизменный состав. Это нашло отражение в законе постоянства состава, открытого в 1801 г.

Прустом: каждое химически чистое соединение независимо от метода его получения обладает определенным элементарным составом. Например, аммиак можно получить двумя способа-

14

ми: а) N2 + 3H2 2NH3; б) NH4Cl NH3 + HCl. Независимо от способа получения его молекулярный состав всегда постоянен, т.е. на один атом азота приходится 3 атома водорода.

Этот закон полностью выполняется для газообразных и жидких веществ, имеющих молекулярную структуру. Но многие кристаллические вещества: оксиды, селиниды, нитриды, карбиды, фосфиды и т.д. построены не из молекул, а из атомов. Для них удается установить только простейшие формулы, т.е. определить только простейшее отношение числа атомов элементов в веществах по процентному содержанию. Эти отношения часто оказываются изменяющимися в известных пределах в зависимости от условий получения веществ, поэтому в их формулах появляются дробные индексы, например, TiO0,7, TiO1,9. Такие соединения имеют переменный состав, который зависит от условий получения (например, состав оксида титана (II) - от температуры и давления кислорода, применяемого при его синтезе).

Закон эквивалентов. В результате работ Рихтера, Дальтона и Волластона (1804 - 1814 гг.) был установлен закон: все вещества реагируют в эквивалентных отношениях

m1 m2 , mЭ1 mЭ 2

где m1 и m2 - массы первого и второго вещества; mэ1 и mэ2 -

эквивалентные массы первого и второго вещества. Химическим эквивалентом называют реальную или ус-

ловную частицу вещества, которая может замещать, присоединять, высвобождать или быть каким - либо другим способом эквивалентна одному иону водорода в кислотно - основных или ионно - обменных реакциях или одному электрону в окислительно - восстановительных реакциях. Например, эквивалентом гидроксида калия и соляной кислоты будут соответственно КОН и НСl, серной кислоты - ½ H2SO4, фосфорной - ⅓ H3PO4, хлорида титана - ¼ TiCl2.

15

Эквивалентной массой называется масса одного эквивалента вещества; измеряется в г/моль. Например, эквивалентная масса NaOH равна 40 г/моль.

Закон кратных отношений. Этот закон формулируется следующим образом: если два элемента образуют несколько соединений друг с другом, то на одну и ту же массу одного из них приходятся такие массы другого, которые относятся между собой как небольшие целые числа. Например, на 1 г азо-

та в разных его оксидах приходится 0,57; 1,4; 1,71; 2,28; 2,85 г кислорода, что соответствует отношению 1 : 2 : 3 : 4 : 5. Это отношение обусловлено числом атомов кислорода, которое приходится на каждые два атома азота в молекулах:

N2O, 2NO, N2O3, 2NO2 N2O4, N2O5

Закон Авогадро (1811 г.) формулируется следующим образом: в равных объемах различных газов при одинаковых физических условиях (температуре и давлении) содержится одинаковое число молекул.

В 1856 г. Жераром были установлены следствия из закона Авогадро. Первое следствие: 1 моль любого газа имеет равный объем при одинаковых физических условиях. Этот объем можно вычислить, если известна масса 1 л газа. При нормальных условиях, т.е. при 273,15 К и 101325 Па, масса 1 л водорода равна 0,09 г, молярная масса молекулярного водорода равна 2,0158 г/моль. Тогда объем, занимаемый 1 моль водорода, будет: 2,0158 г/моль: 0,09 г/л = 22,4 л/моль. Этот объем называется молярным объемом газа.

Итак, молярный объем газа - это отношение объема вещества к количеству этого вещества:

Vm V ,

где Vm - молярный объем газа; V - объем вещества системы;- количество вещества системы.

Пример записи: Vm газа = 22,4 л·моль-1.

Второе следствие: молярная масса вещества в газообразном состоянии равна его удвоенной плотности по водороду.

16

М = 2,0158 · DH 2 ,

где M - молярная масса газа; DH 2 - плотность газа по водороду.

Часто плотность газа определяют по отношению к возду-

ху (Dвозд).

Хотя воздух является смесью газов, все же говорят о его средней молярной массе. Она равна 29 г/моль.

1.5. Значение химии в развитии техники

Исторически развитие химии началось в глубокой древности, когда в качестве строительных материалов использовались некоторые металлы, стекло, кирпичи. До сих пор существуют разработанные в то время химические процессы, например, пивоварение, выплавка железа и меди и др.

На протяжении многих веков химики сумели синтезировать огромное количество природных веществ, начиная от аммиака и кончая гормонами насекомых.

Однако формирование химии как науки начиналось лишь

вконце XVIII века. С открытием химических законов химия еще в большей степени ускорила производство новых веществ, с новыми свойствами.

Сначала ХХ века прогресс химии был существенно ускорен возможностью получения синтетических веществ, не известных в природе. Во всем мире резко возросли темпы на- учно-технических разработок в области химии. Если в середине ХIХ века на превращение чернового варианта процесса электрохимического получения Al (1854 г.) в промышленный метод потребовалось 35 лет, то в 50-е годы ХХ века крупномасштабное производство полиэтилена низкого давления было создано менее чем за 4 года.

Однако разработка новых химических продуктов требует больших материальных затрат. Например, чтобы найти лишь несколько лекарственных препаратов, которые можно пустить

впромышленное производство нужно подготовить не менее 4000 веществ. В промышленно развитых странах, например, в

17

США на каждый внедряемый в химическое производство продукт приходилось около 450 теоретических разработок. Из них ~ 100 вариантов отбирали для лабораторных испытаний, а затем 5-8 – для опытного производства на химических установках. Не смотря на эти колоссальные затраты не более 50 % отобранных после промышленных испытаний продуктов имели какое-либо хозяйственное значение. Но значение этих продуктов так высоко, что полностью перекрывает стоимость непродуктивной разработки и внедрение их в промышленность.

Следует отметить, что 20 % мировых патентов выдаются на открытия или изобретения в области химии, в чем особенно отражается прогрессивный характер этой науки.

Весьма огромен вклад химии в удовлетворение основных потребностей людей и повышение жизненного уровня. В повседневной жизни средний гражданин использует не менее 300-500 продуктов химии, в том числе около 100 – в виде текстильных изделий, примерно 300 – в быту, на рабочем месте, приблизительно 50 медикаментов и столько же продуктов питания. Всего в настоящее время для всех мыслимых целей материального производства и удовлетворения потребности людей в их распоряжении имеется не менее 1 миллиона веществ, выпускаемых химической промышленностью. Общее число известных химических соединений оценивается около 7,5 млн. В химических лабораториях в мире ежедневно синтезируется свыше 200 новых химических веществ.

Несомненно, что сейчас химия со своими продуктами, методами, концепциями устремлена в будущее. Но еѐ успешное продвижение вперѐд тесно связано другими дисциплинами, особенно с физикой, математикой, техникой и биологией. Развитие современного химического производства немыслимо без развития и совершенствования методов монтажа установок, электроники, компьютерной, измерительной, управляющей и регулирующей техники, а также без улучшения сырьевой базы и энергетического хозяйства. Для всех этих отраслей хозяйства химия становится главным потребителем. В свою

18

очередь химия для этих отраслей разрабатывает новые продукты и методы, ускоряющие их прогресс. Без химии были бы невозможны такие завоевания человечества, как освоение космического пространства и использование атомной энергетики в мирных целях. Химические продукты и процессы применяются во многих отраслях материального производства: при изготовлении стекла, керамики, строительных материалов, в металлургической и пищевой промышленности. Такие принципиально новые физические эффекты, как радио и телевидение, магнитная запись и луч лазера, а также информационные и нанотехнологии могли быть технически реализованы благодаря созданию необходимых для них новых веществ и материалов. Можно утверждать, что современная химия определяет темпы научно-технического прогресса во всех существующих областях материального производства.

Глава 2. СТРОЕНИЕ АТОМОВ. ПЕРИОДИЧЕСКИЙ ЗАКОН И ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д.И. МЕНДЕЛЕЕВА

2.1. Первые модели строения атома

В соответствии с атомно-молекулярным учением до конца X1X века считалось, что атом является неделимой и устойчивой частицей. Это находило подтверждение во множестве химических реакций, в которых вещества реагировали между собой в определенных массовых отношениях, пропорциональных массам целых атомов. Однако изучение различных физи- ко-химических явлений ставило под сомнение незыблемость атомно-молекулярного учения. Благодаря электрохимическим исследованиям, проведенным Петровым (1804 г.) и Дэви (1807 г.), а также установленным Фарадеем (1830-1834 г.г.) законам электролиза стало очевидным, что атомы могут нести положительный или отрицательный заряд.

19

С развитием спектральных методов анализа был установлен ряд количественных закономерностей, которые составили основу теории строения атома. Так, для спектра испускания водорода в видимой области Бальмером (1885 г.) было установлено определенное соотношение между частотами спектральных линий (серия Бальмера). В дальнейшем подобные соотношения были установлены Лайманом в ультрафиолетовой области и Пашеном – в инфракрасной.

Еще одним доказательством сложного строения атома послужило открытие в 1896 г. А. Беккерелем явления радиоактивности соединений урана. Позднее Пьер и Мария Кюри выделили из остатков руды после извлечения урана новый элемент – радий (Ra), радиоактивность которого оказалась в миллион раз выше радиоактивности урана.

Дальнейшие исследования явления радиоактивности, выполненные Э.Резерфордом, позволили обнаружить существование излучения трех видов – альфа (α)-, бета (β)- и гамма (γ)- лучей. Излучение каждого вида отличалось по своим электрическим свойствам и проникающей способности.

Дж. Томсон (1896 – 1897 г.г.) изучая природу катодных лучей, открытых Круксом (1879 г.), доказал, что они представляют собой поток электронов, вылетающих из катода со скоростью, близкой к скорости света. Он установил отношение заряда к массе электрона (ē/m), которое позднее было использовано для определения массы электрона и его заряда. В 1909 г. Малликен определил заряд электрона (ē = 1,6021·10-19 Кл), измеряя действие электрического поля на скорость падения капелек масла под действием силы тяжести. Подставив это значение в найденное Томсоном отношение заряда электрона к его массе была определена масса электрона (m = 9,1091·10-31

кг).

Первая модель, основанная на опытных данных, которые указывали на сложность строения атома, была предложена в 1904 г. Дж. Томсоном. В соответствии с этой моделью атом рассматривался как облако положительно заряженных частиц с

20

распыленными в нем электронами. Однако оставалось неясным, что представляют собой частицы несущие положительный заряд. Последующие открытия начала XX века опровергли эту модель атома.

Продолжая исследовать природу явления радиоактивности Резерфорд установил, что радиоактивное излучение радия состоит из - частиц (т.е. ядер гелия 2Не), которые выбрасывают ядра 88Ra, самопроизвольно распадаясь и превращаясь в ядра 86Rn. Эти частицы имеют заряд +2. β – излучение представляет собой поток электронов. В единицах заряда электрона каждая β- частица имеет заряд –1. γ – лучи представляют собой излучение высокой энергии, подобное рентгеновским лучам, открытым в1896 г. Рентгеном.

Открытие электрона и явление радиоактивности подтвердило идею о том, что атомы химических элементов представляют собой сложные системы, состоящие из более простых веществ.

В последующих экспериментах для изучения структуры атома Резерфорд использовал - частицы (рис. 1). Результаты исследований (1911 г.) позволили отказаться от модели, предложенной Томсоном. Его эксперимент заключался в бомбардировке тонкой золотой фольги потоком быстрых - частиц (He2+). Регистрация - частиц проводилась с помощью флуоресцирующего экрана из сернистого цинка. Большинство частиц (~99 %) проходили через пластинку без отклонения и только некоторые (одна частица из 105) подвергались действию отклоняющей силы, а иногда даже отбрасывались на угол больше 90º. На основании полученных данных и математических расчетов Резерфорд предложил следующее строение атома: с одной стороны ядро, состоящее из протонов и нейтронов, в котором сконцентрированы масса и положительные заряды; с другой стороны электроны, вращающиеся в периферийной зоне на значительном расстоянии от ядра. Центробежная сила противодействует силе притяжения электронов ядром. Таким образом, атом напоминает солнечную систему в миниатюре.

21

Рис. 1. Пути прохождения - частиц через золотую фольгу

Резерфорд рассчитал размеры ядра атома: его диаметр равен приблизительно 10-12 см, тогда как диаметр атомов порядка 10-8 см.

Существенным недостатком в теории Резерфорда явилось то, что она не могла объяснить причину устойчивости атомов, поскольку из его теории следует, что электрон, двигаясь по окружности, будет непрерывно терять энергию (в виде электромагнитных волн) непрерывно приближаясь к ядру. Кроме того, эта теория не могла объяснить существование линейчатых спектров для атомов.

Объяснение спектра водорода и других атомов было дано датским физиком Нильсом Бором в 1913 г.

Модель Бора для атома водорода. Н. Бор разработал тео-

рию строения атома водорода, используя модель Резерфорда и квантовый постулат Планка (1900 г.), который предложил теорию, основанную на предположении, что энергия не излучается атомами непрерывно, а испускается отдельными мельчайшими неделимыми порциями - квантами, величина которых зависит от частоты излучаемого света, а именно Е = h , где Е - энергия кванта; h – постоянная Планка, равная 6,62·10 -34 Дж·с; - частота колебаний, равная отношению скорости света с к длине волны λ ( = с/λ). Это уравнение называется уравнением Планка. Оно выражает один из основных законов при-

22