Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Методическое пособие 689

.pdf
Скачиваний:
5
Добавлен:
30.04.2022
Размер:
4.35 Mб
Скачать

Н– Х….. Н – Х….. Н – Х

Вкачестве Х можно взять атомы F, O, N, Cl, S и др. Точечным пунктиром обозначена водородная связь.

Вмолекулах НХ атом H ковалентно соединен с электроотрицательным элементом, общая электронная пара значи-

тельно смещена к электроотрицательному элементу. Водородный атом оказывается протонированным (H+) и он имеет свободную орбиталь.

Анион электроотрицательного элемента другой молекулы НХ имеет неподеленную пару электронов, за счет которых происходит взаимодействие. Если водородная связь образуется между разными молекулами, то она называется межмолекулярной, если связь образуется между двумя группами одной и той же молекулы, то она называется внутримолекулярной. Об-

разование водородной связи наблюдается в растворах НF, H2O (жидк.), NH3 (жидк.), спиртах, органических кислотах и др.

Энергия и длина водородной связи. Водородная связь отличается от ковалентной меньшей прочностью. Энергия водородной связи невелика и достигает 20 – 42 кДж/моль. Она зависит от электроотрицательности (ЭО) и размеров атомов Х: энергия возрастает с увеличением ЭО и уменьшением их размеров. Длина ковалентной связи заметно меньше длины водо-

родной связи (l св.H), например, l св. (F - H) = 0, 092 нм, а lсв.H (F … H) = 0, 14 нм. У воды lсв. (O - H) = 0, 096 нм, а lсв.H (O … H) = 0, 177 нм.

Влияние водородных связей на свойства веществ. При возникновении водородных связей образуются димеры, тримеры или полимерные структуры, например зигзагообразные структуры (HF)n, кольцевые структуры некоторых органических кислот, например уксусной кислоты

103

или более сложные конфигурации, например у льда, у которого молекулы воды образуют по четыре водородные связи

Соответственно в жидком состоянии молекулы, вступающие в водородные связи, ассоциированы, а в твердом состоянии образуют сложные кристаллические структуры.

При образовании водородных связей существенно изменяются свойства веществ: повышаются температура кипения и плавления, вязкость, теплоты плавления и парообразования. Например, вода, фтороводород и аммиак имеют аномально высокие температуры кипения и плавления.

Вещества в парообразном состоянии проявляют водородную связь в незначительной степени, т.к. с повышением температуры энергия водородной связи уменьшается.

3.10. Межмолекулярное взаимодействие

Известны следующие агрегатные состояния веществ: газообразное, жидкое и твердое. Жидкое и твердое состояния называют также конденсированным состоянием. Любое вещество при определенных условиях может быть получено в кристаллическом состоянии.

Каждое из этих состояний определяется соотношением между силами отталкивания и притяжения молекул. Силы притяжения или сцепления между молекулами были установлены Ван-дер-Ваальсом (1873 г.) и были названы вандерваальсовыми.

Ван-дер-ваальсовы силы зависят прежде всего от расстояния между центрами взаимодействующих молекул. На больших расстояниях эти силы ничтожно малы (при нормальных давлениях). В газах, находящихся под высоким давлением, силы межмолекулярного взаимодействия следует учиты-

104

вать. Энергия межмолекулярного взаимодействия невелика и составляет около 8-47 кДж/моль, т.е. в 10-100 раз меньше энергии химического взаимодействия между молекулами.

Поскольку в жидкости расстояния между молекулами меньше, чем в газе, в ней Ван-дер-ваальсовы силы проявляются в большей степени (сфера действия этих сил – 10 А0). Жидкость частично может обладать упорядоченной структурой (ближний порядок), т.е. часть молекул в ней сохраняет определенное пространственное расположение, объединившись в некоторый микрокристаллит, при более низкой температуре их образуется больше.

В твердых телах поступательное движение молекул отсутствует: частицы могут совершать лишь колебательные движения около определенных центров равновесия. Силы межмолекулярного взаимодействия в данном агрегатном состоянии имеют наибольшее значение, а расстояние между молекулами достигает некоторого минимума.

Природа Ван-дер-ваальсовых сил. Различают три типа электростатического взаимодействия: ориентационное, индукционное и дисперсионное.

1)Ориентационное им диполь - дипольное взаимодействие проявляется между полярными молекулами. При сближении таких молекул они ориентируются. Одноименно заряженные концы диполей взаимноотталкиваются, а противоположные – притягиваются. Чем более полярны молекулы, тем упорядоченнее ориентация. Повышение температуры уменьшает ориентационное взаимодействие молекул.

2)Индукционное взаимодействие происходит между полярной и неполярной молекулами.

µ ≠ 0

µ = 0

105

Электрическое поле полярной молекулы может индуцировать диполь i ≠ 0), следовательно, молекула становится ин- дуцировано-полярной. Возникает индуцированное взаимодействие. Индуцирование приводит к деформации электронной оболочки молекулы, поэтому этот тип взаимодействия называют иногда деформационным. Эффект индуцирования не зависит от температуры раствора, а зависит от напряженности электрического поля молекулы.

Третий тип взаимодействия (взаимодействие между неполярными молекулами) называется дисперсионным. Хотя у обоих неполярных молекул дипольный момент равен нулю, вследствие пульсирующего движения электронного облака (или движения электронов внутри молекулы) в одной из молекул на мгновение возникает незначительный дипольный момент, который индуцирующе действует на соседнюю молекулу. Между этими молекулами возникает дисперсионное взаимодействие. Для реальных молекул при их взаимодействии проявляются все три типа взаимодействия: ориентационное, индуцированное и дисперсионное. Общая энергия притяжения между молекулами Eобщ., является суммой энергий ориентационного (Eо), индуцированного (Eи) и дисперсионного (Eд) взаимодействия

Eобщ. = Eо + Eи + Eд

Таким образом, Ван-дер-ваальсовы силы обусловлены электрическими полями молекул или атомов.

Глава 4. КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ ВЕЩЕСТВА

Любое вещество может находиться в трех агрегатных состояниях: газообразном, жидком и твердом. Наименьшее влияние сил межмолекулярного взаимодействия наблюдается в газообразном состоянии, так как плотность газов мала и молекулы их

106

находятся на больших расстояниях друг от друга. Газы, находящиеся при температурах, значительно превышающих их критическую температуру, и при давлениях ниже критического считаются «идеальными». К идеальным газам применима статистика Максвелла-Больцмана и уравнение состояния идеального газа Клапейрона-Менделеева. Однако при точных расчетах нужно вносить поправки на межмолекулярное взаимодействие (Рандалл, Льюис). Величины критической температуры и критического давления зависят от строения молекул газа, так

как при понижении температуры ниже Ткрит и при повышении давления газ начинает конденсироваться, или под действием

межмолекулярных сил между отдельными молекулами вещество переходит в жидкое состояние.

Процесс конденсации газов сопровождается значительным выделением энергии.

Следует отметить, что при комнатной температуре бал-

лон с кислородом будет содержать газ (Ткомн. > Ткрит.) при давлении 150 ат., а в баллонах с СО2 или пропан-бутановой сме-

сью (Ткомн < Ткрит), будут содержаться жидкости и давление в них определяется упругостью насыщенного пара, зависящей от температуры. В жидкости молекулы находятся на малых расстояниях друг от друга и силы межмолекулярного взаимодействия весьма значительны, что создает очень большое внутреннее когезионное давление (долгое время жидкость считали несжимаемой), увеличивает вязкость жидкостей при течении и создает поверхностное натяжение на границе раздела - жидкость - пар. Поверхностное натяжение обусловливает форму жидкостей: жидкость в состоянии невесомости принимает форму идеального шара (максимальный объем при минимальной поверхности).

При понижении температуры плотность жидкостей растет, молекулы сближаются, и возрастает энергия межмолекулярного взаимодействия; при вполне определенном значении температуры (температура кристаллизации или плавления) вещество переходит в твердое состояние, которое характеризуется упоря-

107

доченным расположением частиц в пространстве - кристаллическим строением. Для зарождения кристаллов необходимы некоторые условия: переохлаждение жидкости ниже температуры плавления (доли градусов), появление субмикроскопических центров кристаллизации - зародышей выше критических размеров, которые, постепенно увеличиваясь, превращают жидкость в кристаллическую массу (центрами кристаллизации могут явиться и твердые частицы примесей). Кристаллизация протекает с выделением энергии, но менее значительным, чем при конденсации. Процессом кристаллизации можно управлять, и этим пользуются в технологии, получая мелкокристаллические или крупнокристаллические структуры, а также выращивая монокристаллы. При очень большом переохлаждении жидкости с большой вязкостью (кремнезем, силикаты и алюмосиликаты) могут перейти в стекловидное состояние, в котором сохраняется неупорядоченная структура. Этим, например, пользуются при изготовлении стекол или ситаллов (частично закристаллизованное стекло).

Кристаллы можно получать, минуя жидкое состояние, путем конденсации пара на охлажденной стенке (подложка). Так наносят металлические слои на различные материалы - вакуумное напыление.

4.1. Макроскопические свойства кристаллов

Обычно твердое тело характеризуется тем, что оно стремится сохранить не только свой объем, но и приданную ему форму (стержень, пластина и т.д.). Из этого определения, которое охватывает все тела, обычно называемые твердыми, следует выделить кристаллические тела, форма которых обусловлена их внутренним строением, в отличие от квазитвердых тел - стекол (которые можно рассматривать как жидкости с бесконечно большой вязкостью), полимерных материалов и т.д.

Кристаллические вещества могут представлять собой один кристалл - монокристалл - или соединение большого числа

108

кристаллических зерен - поликристаллы (металлы), но во всех случаях они проявляют свои особые свойства: постоянная температура плавления, анизотропность.

Анизотропией кристаллов называют различие их свойств в зависимости от направления относительно осей симметрии, поскольку кристалл представляет собой симметричную фигуру.

В поликристаллических телах (металлы) анизотропия проявляется слабее, так как кристаллические зерна могут быть ориентированы хаотично - псевдоизотропия. В определенных условиях, а именно при пластической деформации, поликристаллические металлы проявляют свою анизотропность. Квазитвердые тела этим свойством не обладают и являются изотропными.

Кристаллом является твердое тело, ограниченное плоскими гранями, пересекающимися под определенными углами.

Форма кристаллов характеризуется не столько соотношением сторон, сколько двугранными углами, возникающими между пересекающимися плоскими гранями.

Одно и то же вещество, кристаллизуясь в различных условиях, может образовать кристаллы различной формы - по-

лиморфизм.

Так, например, полиморфизмом обладает диоксид кремния SiO2, образующий 6 различных форм кристаллов: α- и β- кварцы, α- и β- тридимиты, α - и β -кристобалиты.

Различные вещества могут образовать одинаковые формы кристаллов, обладающие при этом разным составом, - изоморфизм. Так, например, двойные соли (так называемые квасцы) KAl (SO4)2·12H2O и KCr (SO4)2·12H2O кристаллизуются в одной и той же системе и могут свои кристаллы наращивать на кристаллы других квасцов.

Различные формы кристаллов можно систематизировать, изучая их геометрию и симметрию. Е. С. Федоров (1890) систематизировал кристаллы на основе их симметрии и разработал методы количественной оценки степени симметрии по осям, плоскостям и центрам симметрии и их порядку.

109

Порядком оси симметрии является число повторений геометрических элементов при повороте фигуры относитель-

но этой оси на угол 2π = 360°. Например, для такой элементарной фигуры, как куб, можно найти оси симметрии четвертого и второго порядков; такие же оси симметрии определяют собой и другую фигуру - октаэдр.

Плоскость, делящая кристалл на две зеркально отображающиеся части, называется плоскостью симметрии.

Центр симметрии, совпадающий у куба с его геометрическим центром, также характеризует симметрию кристалла.

Кристаллические системы Е.С. Федорова характеризуются взаимным расположением осей (углы между ними) и соотношением их длин. В пределах каждой системы могут быть модификации за счет усложнения форм граней, но при сохранении элементов симметрии, что в конечном итоге дает колоссальное разнообразие внешних форм кристаллов.

Так как кристаллических веществ очень много, то изучение их геометрических структур и свойств, зависящих от геометрии кристалла, развилось в особую науку - кристаллографию, основы которой были заложены Е. С. Федоровым. Внешняя форма кристалла является отображением его внутренней структуры, созданной взаимным расположением частиц в пространстве.

4.2. Внутреннее строение кристаллов

Связь между формой макроили микрокристалла и его внутренним строением, определяемым распределением элементарных материальных частиц в пространстве, удалось установить после открытия рентгеновских лучей.

При прохождении через кристалл узкого параллельного пучка рентгеновских лучей наблюдается их дифракция и интерференция (Лауэ, 1912). На регистрирующей фотопластинке кроме центрального пятна появляется большое количество

110

пятен, расположение которых характерно для данного кристалла и угла поворота его к направлению рентгеновского луча.

В 1913 г. У.Г. и У.Л. Брэгги предложили уравнение, связывающее расстояние между плоскостями в кристалле, вызывающими явление интерференции, длину волны рентгеновского луча и угол между направлением луча и плоскостью кристалла

n 2d sin Ө,

где λ - длина волны рентгеновского луча, d - расстояние между плоскостями, Ө - угол между лучом и плоскостью или угол скольжения, п - целое число (условие усиления лучей).

Длина волны рентгеновского луча зависит, как известно, от материала антикатода.

Восстановив по фигурам интерференционных пятен расположение в пространстве частиц, вызвавших дифракцию, можно сделать вывод о внутреннем строении кристалла.

Таким образом, внутреннее строение кристаллов представляется как система атомов, определенным образом располо-

женных в пространстве, - кристаллическая решетка.

Элемент кристаллической решетки или элементарная ячейка - геометрическая фигура, образованная материальными частицами, расположенными определенным образом в пространстве, мысленно выделенная из общего тела кристалла.

Последнее добавление в формулировке необходимо потому, что кристаллическая решетка не представляет собой сумму изолированных кристаллических ячеек (например, кубов), а каждая частица, входящая в данную ячейку, одновременно принадлежит и окружающим ее кристаллическим элементам.

Оказалось, что число форм кристаллических ячеек меньше, чем форм макрокристаллов, так как скорость распространения этих ячеек по осям симметрии может быть различной, что и приводит к построению различных по форме макрокристаллов. Плоская грань кристалла может представлять собой ступенчатую поверхность, образованную слоями кристалличе-

111

ских ячеек, но она кажется нам идеально гладкой, так как высота этих ступенек измеряется ангстремами. Исходя из внутреннего строения кристалла, можно дать другое определение кристал-

лического тела: кристалл - часть пространства, заполненная параллельной трансляцией геометрического элемента, называемого элементарной ячейкой.

Рассмотрим элементарную ячейку простого куба и определим ее основные характеристики. Важнейшей характеристикой куба является величина его ребра а. Однако не всегда расстояние между его плоскостями d, заполненными материальными частицами и вызывающими дифракцию и интерференцию рентгеновских лучей, равно величине ребра: d = a. В кубе можно провести несколько плоскостей (рис. 32). Их индикация определяется числом пересечений с осями координат: это плоскости 100, 110 и 111. Если рентгеновские лучи падают перпендикулярно плоскости 100 (рис. 33, а), то они встретят 2 плоскости и расстояние между плоскостями будет равно d100; если они

 

 

 

 

 

перпендикулярны плоскости 110, то d110 =

а 2

 

так как плос-

2

 

 

 

 

 

 

костей будет уже 3 и расстояние между плоскостями равно половине диагонали грани куба (рис. 33, б), а если лучи будут падать перпендикулярно плоскости 111, то они встретят уже 4 плоскости и расстояние между этими плоскостями равно

d 111 = а3 (рис. 33, в). 3

Рис. 32. Рентгенографические плоскости в простой кубической решетке

112